研究内容

「生命の最小単位である細胞を物理学・情報工学の立場で理解し、その工学・医学への応用」を目指して研究しています。研究内容は、細胞の硬さから正常細胞と異常細胞を見分ける技術の開発、細胞シート・マイクロパターン細胞を用いた細胞機能・細胞情報伝達関数の研究、細胞ナノ計測法の開発、等々です。原子間力顕微鏡、光計測技術、微細加工技術のナノテクノロジーを駆使して、単一細胞から細胞集団まで、細胞を操って実験を行っています。細胞生物学と情報工学の境界領域の新しい分野なので、皆さんの柔軟な発想で研究ができます。生物を物理・工学的に解明したい方、細胞の工学的な応用に興味のある方、一緒に研究しませんか。研究室紹介(web掲載)2017年度

細胞の「力」を精密に計測する手法を開発:工学的な視点から生命の謎に迫る

多重周波数フォースモジュレーションAFM法:細胞レオロジーの高速マッピング(細胞計測学)

AFMを用いたイメージングやマッピングによって,細胞内部の弾性率の不均一性を観察することができる.一方で,細胞の弾性率は低周波数領域(<1kHz)において細胞固有の周波数特性を示すため(Fabry et al. Phys. Rev. Lett., 2001) 、弾性率の周波数特性の計測は重要である.これまで、フォースモジュレーションAFM法(Radmacher et al. Science 1992)を用いて、1つの周波数における細胞の弾性率のマッピングが可能であったが,細胞弾性率の周波数特性のマッピングは困難であった.当研究室では、多重周波数フォースモジュレーション法を開発し,細胞弾性率の周波数特性のマッピングに成功し,単一細胞内の力学特性の空間分布を明らかにした.本技術は細胞内部構造の力学的可視化やがん細胞の力学的高速診断技術への応用が期待される(Takahashi and Okajima. Appl. Phys. Lett., 2015).

単一細胞診断:個々の細胞の個性は? (細胞医工学)

細胞病理検査は,がん細胞の早期発見や腫瘍細胞の判定の重要な医療検査技術である.一般に,細胞病理検査において,免疫染色した細胞を光学顕微鏡で観察し,細胞形態やタンパク質発現量等から細胞の病態を診断する.一方で,近年,細胞の弾性率の違いから,がん細胞と正常細胞とを診断できる可能性が指摘されてきた(Cross et al. Nat. Nanotech., 2007).がん細胞は正常細胞より有意に柔らかく,細胞の弾性率が,がん細胞検査の指標として利用でき,がん細胞検査の定量化が期待される.これを実現するためには,再現性のある細胞力学物性を如何に計測するか,その手法の確立が急務である.当研究室では,細胞の力学特性を最も高精度に計測できる原子間力顕微鏡(Atomic Force Microscopy: AFM)を用いて,多数細胞の力学計測技術を開発した.そして,細胞力学特性データから,細胞固有力学量を抽出し,細胞力学特性の個性の定量化に成功した (Cai et al. Biophys. J, 2013).

細胞膜は揺らいでいる!:イオンコンダクタンス顕微鏡(細胞物理学)

イオンコンダクタンス顕微鏡(SICM)は,柔らかい生細胞表面膜の形状を極めて高い分解能で計測できる走査プローブ顕微鏡である.SICMは,電解質溶液が満たされた,先端径100nm程の微小孔をもつガラスナノピペットをプローブとして用いる.そして,微小孔を流れるイオン電流を測定する.ピペット探針が細胞表面に近づくと,細胞表面の存在による“抵抗”により,微小孔を流れるイオン電流量が減少する.この現象を利用して,非接触で表面位置をナノメートルの精度で検知できる.最近,当研究室では,SICMを用いた生細胞表面の揺らぎ計測法を開発した.そして,上皮細胞シートの細胞表面の空間揺らぎをナノスケールで計測することに成功した (Y. Mizutani et al. Appl. Phys. Lett., 2013).

細胞内部を力が伝播する!:原子間力顕微鏡(細胞情報工学)

細胞は,接着点を介して周囲の細胞外マトリクスと接着する.細胞と細胞外マトリクスとの間に働く力は,細胞骨格を介して細胞内部の細胞核やその他の細胞内小器官に長距離に伝播し,力による細胞内構造の変化が,遺伝子発現等の細胞機能の制御と密接に関係していると考えられている(Wang et al. Nat. Rev. Mol. Cell Biol., 2009).しかし,細胞骨格を介する力伝播の直接観察法はなかった.当研究室では,離散的な力を高感度に計測できるマイクロポスト基板と細胞のAFM法を併用した新手法を用いて,特定の周波数(<1Hz)において,細胞骨格を介する力伝播を直接測定することに成功した.本計測技術は,細胞内の複雑な骨格構造が生み出す力伝播関数を調べる有用な手法になると期待できる(Okada et al. Appl. Phys. Lett., 2011).