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Abstract:  
Recently, with the progress of laser scanning technology, it has become possible to easily acquire point 
clouds of large scale environments from several scanning platforms, and these point clouds are used in 
several fields such as simulation analysis, city planning, and plant management. Viewing the scenes 
acquired by laser scanning is necessary for checking scanned environments. However, it is difficult to 
understand the scanned environments only by displaying points as a rendering primitive. There are 
several existing rendering methods for point-sampled objects, such as methods using splats or surface 
mesh models in computer graphics field. However, it is difficult to achieve an effective view of the 
scenes of large scale environments with the existing rendering methods because the data have 
extremely non-uniform point density and spatial distribution and also include various kinds of objects 
with different scales and shape complexity. In this paper, in order to realize effective views of the 
scanned large scale environments, we describe a method for generating rendering models and point 
hierarchies of scanned large scale environments, as well as a method for LOD rendering using them. 
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1. Introduction 
Laser scanning technology has become more and 

more common, and the development of technology has 
enabled the easy acquisition of point clouds of large 
scale environments from indoor to outdoor scenes. These 
point clouds are used in several fields such as simulation 
analysis, city planning, and plant management. There are 
3 typical scanning types: TLS (Terrestrial Laser 
Scanning), MMS (Mobile Mapping System), and ALS 
(Airborne Laser Scanning). For example, MMS can 
acquire point clouds of large area, such as urban areas, 
using a sensor mounted mobile vehicle, and point clouds 
acquired from MMS are used for simulating a landscape 
of a city, periodic checkup of utilities such as roads, 
tunnels, etc. 

Viewing the scenes acquired by laser scanning is 
necessary for checking the scanned environments. 
However, it is difficult to understand the scanned 
environments only by displaying points as a rendering 
primitive, which do not have surface information. There 
are typically two types of point cloud rendering methods, 
polygon-based rendering and point-based rendering. A 
rendering method using triangular mesh models is one of 
the most major polygon-based rendering methods. The 
surface of point-sampled objects can be reconstructed by 
generating mesh models. On the other hand, the 
point-based rendering method, as represented by 
splatting, has a simple data structure and does not need to 
construct topological information because a model is 
constructed from each point. Moreover, point-based 
rendering can easily sample points in suitable density for 
a specific image resolution, and it is suitable for LOD 
(Level of Detail) processing, which is necessary in case 
of handling large scale data sets. However, it is difficult 

to achieve an effective view for understanding the 
scanned large scale environments using these methods 
because the data have extremely non-uniform point 
density and spatial distribution and also include various 
kinds of objects with different scales and shape 
complexity. 

In this paper, we describe a method for generating 
rendering models and point hierarchies appropriate for 
effective views of scanned large scale environments and 
a method for LOD rendering using them. A rendering 
model consists of three types of primitives, i.e. line 
segment, quadrilateral splat, and triangular mesh, and it 
is generated by adaptive selection of them based on 
dimensional analysis of local point distribution. Point 
hierarchy is created using octree structure and 
quantization. 

The rest of this paper is organized as follows. Related 
works are described in section 2. In section 3, an 
overview of our rendering method is explained. In 
section 4, a method for rendering model generation is 
described. Creation of point hierarchy based on octree is 
mentioned in section 5. In section 6, LOD rendering 
using a rendering model and point hierarchy is described. 
Results and evaluations are shown in section 7, and 
finally, conclusions and future works are discussed in 
section 8. 

 
2. Related Works 

The triangular mesh is often generated from point 
clouds for rendering application. There are various 
studies on surface reconstruction methods from point 
clouds [1-3]. However, mesh quality (whether the mesh 
represents a correct geometry of the objects) may vary 
depending on the properties of the point clouds. For 



example, mesh models cannot be always generated 
successfully for point clouds of large scale environments 
that have extremely non-uniform point density and 
include objects of complicated shapes. Moreover, 
topological information is not necessarily required for 
rendering applications.  

Point-based rendering is one of the rendering methods 
for several geometric models. In point-based rendering, 
models are regarded as a set of points, and rendering 
primitives are defined at each point individually. Points 
were first used as universal rendering primitives for 
rendering geometric models by Levoy and Whitted [4]. 
Splatting [5] is one of the point-based rendering 
techniques. Splatting defines finite disks or ellipses in 
object space instead of points and renders them in 
image-space by projecting them onto a screen. 
Nakagawa [6] developed a point-based rendering 
application which can generate spatially interpolated 
virtual reality data called LiDAR VR. LDI (Layered 
Depth Image) [7] is also one of the point-based rendering 
methods using splatting. In this method, each pixel of a 
given screen holds a list of all color and depth values of 
the objects that intersect with a given sight line. In order 
to generate an image from several viewpoints, LDC 
(Layered Depth Cube) [8] is developed and consists of 3 
LDI which are associated with 3 axes. Additionally, LDI 
tree [9] enables an appropriate sampling of a LDI pixel 
according to the position and the resolution of the 
reference image by constructing hierarchical structure 
using an octree structure, whose nodes are associated 
with LDI.  

One of the problems of point-based rendering is to 
generate hole-free rendering on screen. Pfister, et al. [10] 
proposed the point-based rendering method using surface 
elements as rendering primitives, called Surfels, in order 
to close the holes and gaps between sample points. This 
method represents an object based on points by 
hierarchical structure using LDI. Surface splatting [11] 
renders object-space disks or ellipses instead of points 
for a hole-free rendering in image-space. This method 
proposes an effective rendering of point-sampled objects 
by texture mapping using a screen space EWA (Elliptical 
Weighted Average) filter. 

Rusinkiewicz et al. [12] proposed a method for 
efficient rendering of large scale 3D mesh data using the 
multi-resolution point rendering technique. For the multi- 
resolution rendering, the data is converted into a tree 
structure. The nodes are laid out in breadth-first order, 
and during rendering, the appropriate resolution can be 
loaded progressively depending on the viewpoint. Wand 
et al. [13] described a new out-of-core multi-resolution 
data structure for real-time visualization and editing of 
large scale point clouds. To achieve efficient rendering, 
multi-resolution data structure is created by converting 
the point clouds into an octree structure and creating the 
quantized points by hierarchical down sampling at each 
inner node of the octree. 

Usually, point based rendering methods using 
anisotropic disks or ellipses as rendering primitives 

require a normal for each point. However, it is difficult to 
derive a correct normal for each point from point clouds 
of large scale environments because they have extremely 
non-uniform point density and spatial distribution. In our 
method, several types of primitives were used in 
rendering simultaneously to get effective views of such 
environments, and correct normal for each point is not 
required. 

 
3. Rendering of Scanned Large Scale Environments 

using Adaptive Primitive Selection and LOD 
In the rendering of scanned large scale environments, 

using adaptive primitives is useful because the 
environment includes several types of objects, such as 
pole like objects, buildings, power lines, cars, trees, 
roads, and so on. For example, compared with polygons 
or points, it is better to use linear type primitives (line 
segment or cylinder) for rendering power lines or pole 
like objects. In addition, LOD rendering of scanned 
environments is necessary for efficient rendering because 
the environments are viewed from several viewpoints. 
Therefore, the construction of a rendering model created 
by adaptive primitive selection and LOD technique using 
them are proposed in this paper. 

In our method, the scanned environment (scene) is 
rendered effectively by view-dependent LOD using 

 
Figure 1. Proposed view-dependent LOD rendering method 

 
Figure 2. Proposed rendering model generation method 
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hierarchical point cloud representations and a rendering 
model with several primitives (line segment, splat, mesh) 
as shown in Fig. 1. When the viewpoint is far from the 
scene, quantized points which are hierarchically down 
sampled points based on an octree structure are used. 
When the viewpoint is moved closer to the scene, 
original points are rendered. In addition, when the 
viewpoint is moved closer and closer to the scene, a 
rendering model is rendered, which is generated by 
adaptively selecting rendering primitives. The rendering 
model and point hierarchies are generated in preprocess 
in our method as shown in Fig. 1. 

 
4. Rendering Model Generation 
4.1 Overview 

In rendering model generation, first, each point is 
classified into a linear object point, a planar object point, 
or an other object point. Then, a line segment is selected 
as a rendering primitive for linear object points, and a 
quadrilateral surface (splat) and a triangular mesh are 
selected as rendering primitives for planar object points 
as well as other object points respectively.  

Figure 2 shows an overview of the rendering model 
generation method. The model is generated in preprocess. 
First, using PCA (Principal Component Analysis) and 
region growing, each point is classified into a linear 
object point, a planar object point, or an other object 
point. Next, linear object segments and other object 
segments are generated based on the result of point 
classification. Finally, the rendering model is generated 
from the result of point classification and segmentation. 

 
4.2 Point Classification (Fig. 2 (A11)) 

Dimensional analysis of point clouds using PCA is 
commonly used for classification and segmentation 
purposes. Vandapel, et al. [14] classify points based on 
the dimensional analysis using PCA. However, they 
mention that it is difficult to classify points based on 
only a result of PCA because the result varies 
considerably depending on the type of terrain and the 
sensor. Jerome, et al. [15] classify points by adaptively 
tuning a parameter (search range for neighboring points) 
of PCA based on point distribution and entropy. In our 
research, we also use PCA for point classification. 

First, planar regions are recognized because they can 
be found a lot in point clouds of large scale environments, 
such as buildings and roads in urban environments. In 
our method, PCA is applied to point clouds for initial 
point classification, and points are reclassified based on 
region growing in order to correctly classify planar 
object points. Then, linear objects and other objects can 
be segmented with high accuracy in subsequent 
segmentation process by classifying planar points 
correctly. 

PCA is used in order to investigate local point 
distribution. Variance-covariance matrix Mi of 
neighboring points of point i is expressed by Eq. (1):  

 ( )( )Tijij ijii ppppM −−= ∑ ∈ **
1 , (1) 

where pi is a coordinate value of point i, i* is a set of 
neighboring points of point i, p� i is a barycenter of i*. 

Eigenvalues λ1
i , λ2

i , λ3
i  (λ1

i ≥λ2
i ≥λ3

i ) of Mi are derived 
by eigen analysis, and distribution feature values 
S1

i , S2
i , S3

i  are calculated by Eq. (2):  
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where α is a coefficient in order to correctly recognize 
3D objects from point clouds of the object surfaces, and 
we set α=10  experimentally. Dimensionality feature 
[15] Di is derived by Eq. (3): 

 )max(arg }3,2,1{
i
ddi SD ∈= . (3) 

According to the Di, each point i is classified into a 
linear object point (Di=1), a planar object point (Di=2), 
and an other object point (Di=3). Figure 3 shows a result 
of point classification of MMS point cloud based on 
PCA. 

Points near the boundary of objects may be 
misclassified as other object points in point classification 
based only on PCA, even if they are actually planar 
object points (Fig. 3). Therefore, by using region 
growing, reclassification of planar object points is 
performed in order to correctly classify them. Region 
growing is done using the following conditions:  
 - Seed point: a point i which satisfies Di=2 and has 

maximum S2
i . 

 - Condition of growing (adding a point to the region): 
the distance between the point and the region 
boundary point (initially, seed point) is smaller than a 
threshold, and distance between the point and the 

 
Figure 3. Point classification result based on PCA 

 

 
Figure 4. Point classification result after reclassification 
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plane is also smaller than a threshold. The plane is 
defined using the normal of the seed point i 
(eigenvector corresponds to λ3

i ). 
Dimensionality feature Di of points in the resulting 
region are newly set to Di=2. Using region growing, 
misclassified planar object points near the object 
boundary can be reclassified correctly, as shown in Fig. 4. 

 
4.3 Segmentation (Fig. 2 (A12)) 
A) Linear Object Segmentation 

Segments of linear objects, such as utility poles and 
power lines, are generated from point clouds without 
planar object points. First, a point i which satisfies Di=1 
and has maximum S1

i  is selected as a seed point of a 
segment. Then, for seed point i (segment boundary point), 
a point k which satisfies the conditions 
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is added to the segment in sequence as shown in Fig. 5(a). 
Where e1

i  is an eigenvector of point i corresponding to 
the largest eigenvalue, δθ and δd are thresholds.  

In case of thick linear objects, such as utility poles, 
multiple parallel line segments can be generated, and 
therefore, neighboring segments are integrated. As 
shown in Fig. 5(b), two segments are integrated if they 
have similar principle directions and the shortest distance 
between fitted straight lines is less than a certain 
threshold. 

 
B) Other Object Segmentation 

Segments of other object such as vegetation, cars, etc. 
are generated from point clouds without planar object 
points and linear object points using region growing. A 
point i with Di=3 is selected as a seed point, and a point 
satisfying the condition that the distance from region 
boundary point (initially, seed point) and the point is 
within a certain threshold is added to the region. 

 
4.4 Rendering Model Generation (Fig. 2 (A13)) 
A) Splat 

Quadrilateral splat is generated for planar object 
points. According to regularity of laser scanned point 
clouds, quadrilateral shapes are selected because it is 
suitable for filling gaps in object space. First, adjacent 
points p1

i …p4
i  of point i are searched along the principal 

directions in order to create splats. As shown in Fig. 6(a), 
a point satisfying the conditions 
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is selected as an adjacent point of point i related to 
direction vector d. 
By using ±e1

i , ±e2
i  as d in above conditions, four 

adjacent points can be obtained. Next, two difference 
vectors of adjacent points v1

i =p1
i − p3

i , v2
i =p2

i − p4
i  are 

generated. Then, corner points are represented by the 
sum of two difference vectors weighted by half of the 
distance between adjacent points and point i, as shown in 
Fig. 6(b).  

 
B) Line Segment 

For linear object segments, first, a line is created so 
that the line passes the barycenter of segment points and 
has an average direction of eigenvectors {e1

i }  of 
segment points as a directional vector. Then, segment 
points are projected onto the line, and line segments are 
generated connecting projected points in sequence. 

 
C) Mesh 

Triangular mesh is generated for other object 
segments. There have been various studies on surface 
reconstruction from point clouds [1-3]. In our 
implementation, a method based on tetrahedralization is 
used [1]. 

 
5. Hierarchical Point Cloud Representation 
5.1 Octree 

When the viewpoint is far from the scene, 
view-dependent LOD of point clouds is used in 
rendering. LOD is based on quantized points and octree 
structure. 

An octree is a hierarchical representation of given 
point cloud and is adopted for efficient rendering of a 
scene by points. The hierarchy is generated by space 
subdivision. In Fig. 7, a quadtree is illustrated instead of 
an octree for simplicity. An octree is a tree data structure 
which is used to partition a 3D space by recursively 
subdividing it into eight sub-spaces. Each node has eight 
children nodes. The root node is associated with a 
minimum axis-aligned bounding cube of the given point 

 

Figure 5. Linear object segment generation 
 

 
Figure 6. Splat generation 
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clouds. Each children node is associated with each 
uniformly subdivided cube of the parent node. The leaf 
node has points in the associated cube. Each node is 
recursively subdivided until the number of points stored 
in it becomes less than a certain number, nmax . For 
example, Fig. 7 shows the case of nmax=10. An octree 
structure enables efficient rendering and determining 
LOD as described in a latter section.  

 
5.2 Quantization 

LOD techniques [12,13] are necessary for efficient 
rendering of large scale scenes. In order to achieve an 
LOD representation, we use quantized points. As shown 
in Fig. 8, first, we create a quantization grid in each inner 
node of an octree by uniformly dividing its cube into 
quantization grid cells. If there are one or more points in 
each quantization grid cell, only one representative point 
is selected randomly and is stored in the node. In this 
way, uniformly down-sampled points can be stored in 
each inner node. 

 
6. LOD Rendering 

As mentioned in section 3, hierarchical point 
rendering using octree structure and quantized points is 
done when the viewpoint is far from the scene. When the 
viewpoint is moved closer, a rendering model generated 
by several primitives is rendered. Proposed LOD 
rendering is done as follows. 

When the viewpoint is far from the scene, a depthfirst 
search of the octree is performed during rendering. Depth 
traversal is done until the node satisfies the condition 
s/d < δ, and the points of the node are used for rendering, 
where s is the side length of quantization grid cell, d is 
the distance from viewpoint to barycenter of the points of 
each octree node, and δ is a threshold (Fig. 9). When 
the viewpoint is moved away from the scene, value d 
becomes large and more down-sampled points in upper 
level nodes are rendered. When the viewpoint is moved 
closer to the scene and the value s/d  exceeds the 
threshold, more detailed points in deeper nodes are 
rendered. In addition, when the viewpoint is moved 
closer and closer, and the value s/d′  exceeds the 
threshold, where d′  is the distance between the 
viewpoint and the barycenter of the nearest node, a 
rendering model generated from several primitives is 
rendered. As a result, real-time view-dependent LOD can 
be achieved. In current implementation, a rendering 
model which represents the scene including all objects is 
used for rendering (local rendering of the model is not 
done). 

 
7. Results and Evaluations 
7.1 Test Data Set and Implementation 

The data set used in this research was scanned by 
MMS in urban area which included 1,585,985 points. 
Our proposed method is implemented on a standard PC 
with Intel Core i7 2.93GHz, 8GB RAM, and GeForce 
GTX 470 graphics board using OpenGL for rendering.  

 

7.2 Point Cloud Rendering Results 
Figure 10 shows the rendering results using our 

method and other methods. When a viewpoint is far from 
the scene, it can be rendered with fewer points by LOD 
rendering while maintaining a certain FPS around 60. 
Results of point rendering at different viewpoints are 
shown in Fig. 10(a)-(b). Efficient rendering is achieved 
using LOD rendering of points.  

For viewpoints close to the scene, the rendering 
model is used in rendering. The rendering model 
generated by our method is shown in Fig. 10(c). The 
number of splats, line segments, and mesh models are 
1,256,277, 145,868, and 413 (consist of 558,789 
triangles) respectively. Figures 10(d), (e), (f) show 
rendering results using points, splats, and mesh 
respectively. Compared with the rendering result using 
only points (Fig. 10(d)), our result (Fig. 10(c)) gives 
easier understanding of the scanned environment, 

 
Figure 7. Hierarchical point cloud representation 

 
Figure 8. Quantization 

 

 
Figure 9. Each parameters used for LOD rendering 
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Figure 10. Result of point cloud rendering   

(e) Rendering by splats without point classification

(d) Rendering by points(c) Viewpoint: close
Primitive: point, line segment, splat, mesh

(f) Rendering by mesh without point classification
(Ball Pivoting [2])

(b) Viewpoint: middle, Primitive: point(a) Viewpoint: far, Primitive: point

Rendering points：83,264 Rendering points：1,320,539

C

F

E

B

A

D

Power 
Line

Road

(g) Another view of (c) (h) Another view of (e) (i) Another view of (f)

D

C

F

E

B

A



especially at the region near the viewpoint, because the 
gaps at the ground and the vegetations are filled by splats 
and meshes. Unnatural vegetations can be seen in the 
rendering result using only splats (Fig. 10(e)) because it  
is difficult to reconstruct complex 3D objects using 
planar primitives from coarse points. Moreover, in the 
result, splats are generated at power lines (Fig. 10(h)). 
On the other hand, in our results, undesired splats are not 
generated at the power lines, because the line segment is 
used for rendering them with the help of point 
classification. Rendering result using only mesh (Fig. 
10(f)) also shows unnatural views at power lines (Fig. 
10(i)). Moreover, mesh is not generated at low point 
density areas such as the edge of roads (Fig. 10(i)) and 
building surfaces. In such areas, the view is improved by 
splats (Fig. 10(g)). Figure 11 shows other rendering 
results from different viewpoints of the scene (Fig. 11(a), 
(b)) and rendering results of another data set (Fig. 11(c), 
(d)) scanned by TLS. Compared with the rendering 
results using only points, the results using the rendering 
models give easier understanding of the scene. However, 
unnatural view around the boundary of the buildings and 
windows can be seen in Fig. 11(b). Therefore, quality 
improvement of the model using the recognition of 
object boundaries is required. 

The processing time for generating the rendering 
model from the MMS data set was 462 [s]. FPS for 
rendering using point hierarchy was around 60, and for 
rendering model was 1-3. Improvement of a rendering 
speed while using rendering model is one of our future 

works. 
 

8. Conclusions and Future Works 
In this paper, we developed a method for rendering 

model generation by adaptive selection of rendering 
primitives (point, line segment, splat, mesh) in order to 
support visual understanding for point clouds of large 
scale environments. Our method is based on the 
dimensional analysis of local point distribution. First, each 
point is classified as either a linear object point, a planar 
object point, or as an other object point based on PCA and 
region growing. Next, linear object segments and other 
object segments are generated based on the results of point 
classification. Finally, a rendering model consisting of a 
set of line segments, splats and meshes is generated from 
the result of point classification and segmentation. In 
addition, hierarchical representation of point clouds based 
on octree structure and quantization is described for LOD 
of point clouds. We confirm that our method provides 
better viewing of scanned large scale environments 
compared to simply using a single type of primitive. 

In the future, we will introduce blending techniques 
for splats, other types of primitives to render a scene 
more effectively, and LOD of a rendering model. 
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Figure. 11 Other results of point cloud rendering 
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