
Adaptive Selection of Rendering Primitives for Point Clouds
of Large Scale Environments

Takashi Maeno1, Hiroaki Date2 and Satoshi Kanai3

Graduate School of Information Science and Technology, Hokkaido University, Japan
1 t_maeno@sdm.ssi.ist.hokudai.ac.jp, 2 hdate@ssi.ist.hokudai.ac.jp, 3 kanai@ssi.ist.hokudai.ac.jp

Abstract:
Recently, with the progress of laser scanning technology, it has become possible to easily acquire point
clouds of large scale environments from several scanning platforms, and these point clouds are used in
several fields such as simulation analysis, city planning, and plant management. Viewing the scenes
acquired by laser scanning is necessary for checking scanned environments. However, it is difficult to
understand the scanned environments only by displaying points as a rendering primitive. There are
several existing rendering methods for point-sampled objects, such as methods using splats or surface
mesh models in computer graphics field. However, it is difficult to achieve an effective view of the
scenes of large scale environments with the existing rendering methods because the data have
extremely non-uniform point density and spatial distribution and also include various kinds of objects
with different scales and shape complexity. In this paper, in order to realize effective views of the
scanned large scale environments, we describe a method for generating rendering models and point
hierarchies of scanned large scale environments, as well as a method for LOD rendering using them.

Keywords: Laser Scanning, Point Cloud, Rendering, Splat, Mesh

1. Introduction
Laser scanning technology has become more and

more common, and the development of technology has
enabled the easy acquisition of point clouds of large
scale environments from indoor to outdoor scenes. These
point clouds are used in several fields such as simulation
analysis, city planning, and plant management. There are
3 typical scanning types: TLS (Terrestrial Laser
Scanning), MMS (Mobile Mapping System), and ALS
(Airborne Laser Scanning). For example, MMS can
acquire point clouds of large area, such as urban areas,
using a sensor mounted mobile vehicle, and point clouds
acquired from MMS are used for simulating a landscape
of a city, periodic checkup of utilities such as roads,
tunnels, etc.

Viewing the scenes acquired by laser scanning is
necessary for checking the scanned environments.
However, it is difficult to understand the scanned
environments only by displaying points as a rendering
primitive, which do not have surface information. There
are typically two types of point cloud rendering methods,
polygon-based rendering and point-based rendering. A
rendering method using triangular mesh models is one of
the most major polygon-based rendering methods. The
surface of point-sampled objects can be reconstructed by
generating mesh models. On the other hand, the
point-based rendering method, as represented by
splatting, has a simple data structure and does not need to
construct topological information because a model is
constructed from each point. Moreover, point-based
rendering can easily sample points in suitable density for
a specific image resolution, and it is suitable for LOD
(Level of Detail) processing, which is necessary in case
of handling large scale data sets. However, it is difficult

to achieve an effective view for understanding the
scanned large scale environments using these methods
because the data have extremely non-uniform point
density and spatial distribution and also include various
kinds of objects with different scales and shape
complexity.

In this paper, we describe a method for generating
rendering models and point hierarchies appropriate for
effective views of scanned large scale environments and
a method for LOD rendering using them. A rendering
model consists of three types of primitives, i.e. line
segment, quadrilateral splat, and triangular mesh, and it
is generated by adaptive selection of them based on
dimensional analysis of local point distribution. Point
hierarchy is created using octree structure and
quantization.

The rest of this paper is organized as follows. Related
works are described in section 2. In section 3, an
overview of our rendering method is explained. In
section 4, a method for rendering model generation is
described. Creation of point hierarchy based on octree is
mentioned in section 5. In section 6, LOD rendering
using a rendering model and point hierarchy is described.
Results and evaluations are shown in section 7, and
finally, conclusions and future works are discussed in
section 8.

2. Related Works

The triangular mesh is often generated from point
clouds for rendering application. There are various
studies on surface reconstruction methods from point
clouds [1-3]. However, mesh quality (whether the mesh
represents a correct geometry of the objects) may vary
depending on the properties of the point clouds. For

example, mesh models cannot be always generated
successfully for point clouds of large scale environments
that have extremely non-uniform point density and
include objects of complicated shapes. Moreover,
topological information is not necessarily required for
rendering applications.

Point-based rendering is one of the rendering methods
for several geometric models. In point-based rendering,
models are regarded as a set of points, and rendering
primitives are defined at each point individually. Points
were first used as universal rendering primitives for
rendering geometric models by Levoy and Whitted [4].
Splatting [5] is one of the point-based rendering
techniques. Splatting defines finite disks or ellipses in
object space instead of points and renders them in
image-space by projecting them onto a screen.
Nakagawa [6] developed a point-based rendering
application which can generate spatially interpolated
virtual reality data called LiDAR VR. LDI (Layered
Depth Image) [7] is also one of the point-based rendering
methods using splatting. In this method, each pixel of a
given screen holds a list of all color and depth values of
the objects that intersect with a given sight line. In order
to generate an image from several viewpoints, LDC
(Layered Depth Cube) [8] is developed and consists of 3
LDI which are associated with 3 axes. Additionally, LDI
tree [9] enables an appropriate sampling of a LDI pixel
according to the position and the resolution of the
reference image by constructing hierarchical structure
using an octree structure, whose nodes are associated
with LDI.

One of the problems of point-based rendering is to
generate hole-free rendering on screen. Pfister, et al. [10]
proposed the point-based rendering method using surface
elements as rendering primitives, called Surfels, in order
to close the holes and gaps between sample points. This
method represents an object based on points by
hierarchical structure using LDI. Surface splatting [11]
renders object-space disks or ellipses instead of points
for a hole-free rendering in image-space. This method
proposes an effective rendering of point-sampled objects
by texture mapping using a screen space EWA (Elliptical
Weighted Average) filter.

Rusinkiewicz et al. [12] proposed a method for
efficient rendering of large scale 3D mesh data using the
multi-resolution point rendering technique. For the multi-
resolution rendering, the data is converted into a tree
structure. The nodes are laid out in breadth-first order,
and during rendering, the appropriate resolution can be
loaded progressively depending on the viewpoint. Wand
et al. [13] described a new out-of-core multi-resolution
data structure for real-time visualization and editing of
large scale point clouds. To achieve efficient rendering,
multi-resolution data structure is created by converting
the point clouds into an octree structure and creating the
quantized points by hierarchical down sampling at each
inner node of the octree.

Usually, point based rendering methods using
anisotropic disks or ellipses as rendering primitives

require a normal for each point. However, it is difficult to
derive a correct normal for each point from point clouds
of large scale environments because they have extremely
non-uniform point density and spatial distribution. In our
method, several types of primitives were used in
rendering simultaneously to get effective views of such
environments, and correct normal for each point is not
required.

3. Rendering of Scanned Large Scale Environments

using Adaptive Primitive Selection and LOD
In the rendering of scanned large scale environments,

using adaptive primitives is useful because the
environment includes several types of objects, such as
pole like objects, buildings, power lines, cars, trees,
roads, and so on. For example, compared with polygons
or points, it is better to use linear type primitives (line
segment or cylinder) for rendering power lines or pole
like objects. In addition, LOD rendering of scanned
environments is necessary for efficient rendering because
the environments are viewed from several viewpoints.
Therefore, the construction of a rendering model created
by adaptive primitive selection and LOD technique using
them are proposed in this paper.

In our method, the scanned environment (scene) is
rendered effectively by view-dependent LOD using

Figure 1. Proposed view-dependent LOD rendering method

Figure 2. Proposed rendering model generation method

Rendering model
generation

LOD
Rendering

Input
point cloud

Parameters

A3

A1

Rendering
result

Rendering model
(Splat, Line segment, Mesh)

Viewpoint

Preprocess

Online process

Hierarchical
structure

generation
A2

Parameters
Hierarchical
point cloud

far closeViewpoint

Down-sampled
points

Original
points

Mesh
Splat

Line segment

Rendering model
generation

Point
Classification

Segmentation

Point Cloud
{Pi}

Searching Radius

PCA

Principal
Direction

Dimensional
Feature Di

Linear Object Segment
Generation Method(4.3,A)

Point Number

{Segment}

A12

A13

A11

Threshould

Other Object Segment
Generation Method(4.3,B)

Delaunay Tetrahedralization

Splat Generation Method (4.4,C)

Rendering
Modellinear

other

planar

Line Segment Generation
Method (4.4,B)

Region Growing

{Planar Point}

Line Segment MeshSplat

Rendering
Primitives

hierarchical point cloud representations and a rendering
model with several primitives (line segment, splat, mesh)
as shown in Fig. 1. When the viewpoint is far from the
scene, quantized points which are hierarchically down
sampled points based on an octree structure are used.
When the viewpoint is moved closer to the scene,
original points are rendered. In addition, when the
viewpoint is moved closer and closer to the scene, a
rendering model is rendered, which is generated by
adaptively selecting rendering primitives. The rendering
model and point hierarchies are generated in preprocess
in our method as shown in Fig. 1.

4. Rendering Model Generation
4.1 Overview

In rendering model generation, first, each point is
classified into a linear object point, a planar object point,
or an other object point. Then, a line segment is selected
as a rendering primitive for linear object points, and a
quadrilateral surface (splat) and a triangular mesh are
selected as rendering primitives for planar object points
as well as other object points respectively.

Figure 2 shows an overview of the rendering model
generation method. The model is generated in preprocess.
First, using PCA (Principal Component Analysis) and
region growing, each point is classified into a linear
object point, a planar object point, or an other object
point. Next, linear object segments and other object
segments are generated based on the result of point
classification. Finally, the rendering model is generated
from the result of point classification and segmentation.

4.2 Point Classification (Fig. 2 (A11))

Dimensional analysis of point clouds using PCA is
commonly used for classification and segmentation
purposes. Vandapel, et al. [14] classify points based on
the dimensional analysis using PCA. However, they
mention that it is difficult to classify points based on
only a result of PCA because the result varies
considerably depending on the type of terrain and the
sensor. Jerome, et al. [15] classify points by adaptively
tuning a parameter (search range for neighboring points)
of PCA based on point distribution and entropy. In our
research, we also use PCA for point classification.

First, planar regions are recognized because they can
be found a lot in point clouds of large scale environments,
such as buildings and roads in urban environments. In
our method, PCA is applied to point clouds for initial
point classification, and points are reclassified based on
region growing in order to correctly classify planar
object points. Then, linear objects and other objects can
be segmented with high accuracy in subsequent
segmentation process by classifying planar points
correctly.

PCA is used in order to investigate local point
distribution. Variance-covariance matrix Mi of
neighboring points of point i is expressed by Eq. (1):

 ()()Tijij ijii ppppM −−= ∑ ∈ **
1 , (1)

where pi is a coordinate value of point i, i* is a set of
neighboring points of point i, p� i is a barycenter of i*.

Eigenvalues λ1
i , λ2

i , λ3
i (λ1

i ≥λ2
i ≥λ3

i) of Mi are derived
by eigen analysis, and distribution feature values
S1

i , S2
i , S3

i are calculated by Eq. (2):

iiiiiiii SSS 33322211 ,, αλλλλλ =−=−= , (2)

where α is a coefficient in order to correctly recognize
3D objects from point clouds of the object surfaces, and
we set α=10 experimentally. Dimensionality feature
[15] Di is derived by Eq. (3):

)max(arg }3,2,1{
i
ddi SD ∈= . (3)

According to the Di, each point i is classified into a
linear object point (Di=1), a planar object point (Di=2),
and an other object point (Di=3). Figure 3 shows a result
of point classification of MMS point cloud based on
PCA.

Points near the boundary of objects may be
misclassified as other object points in point classification
based only on PCA, even if they are actually planar
object points (Fig. 3). Therefore, by using region
growing, reclassification of planar object points is
performed in order to correctly classify them. Region
growing is done using the following conditions:
 - Seed point: a point i which satisfies Di=2 and has

maximum S2
i .

 - Condition of growing (adding a point to the region):
the distance between the point and the region
boundary point (initially, seed point) is smaller than a
threshold, and distance between the point and the

Figure 3. Point classification result based on PCA

Figure 4. Point classification result after reclassification

■Linear Object Point
■Planar Object Point
■Other Object Point

■Linear Object Point
■Planar Object Point
■Other Object Point

plane is also smaller than a threshold. The plane is
defined using the normal of the seed point i
(eigenvector corresponds to λ3

i).
Dimensionality feature Di of points in the resulting
region are newly set to Di=2. Using region growing,
misclassified planar object points near the object
boundary can be reclassified correctly, as shown in Fig. 4.

4.3 Segmentation (Fig. 2 (A12))
A) Linear Object Segmentation

Segments of linear objects, such as utility poles and
power lines, are generated from point clouds without
planar object points. First, a point i which satisfies Di=1
and has maximum S1

i is selected as a seed point of a
segment. Then, for seed point i (segment boundary point),
a point k which satisfies the conditions

,

,min
,)(1

dki

kik

iki

δ

δθ

<−

−

>±⋅−

pp

pp
epp

(4)

is added to the segment in sequence as shown in Fig. 5(a).
Where e1

i is an eigenvector of point i corresponding to
the largest eigenvalue, δθ and δd are thresholds.

In case of thick linear objects, such as utility poles,
multiple parallel line segments can be generated, and
therefore, neighboring segments are integrated. As
shown in Fig. 5(b), two segments are integrated if they
have similar principle directions and the shortest distance
between fitted straight lines is less than a certain
threshold.

B) Other Object Segmentation

Segments of other object such as vegetation, cars, etc.
are generated from point clouds without planar object
points and linear object points using region growing. A
point i with Di=3 is selected as a seed point, and a point
satisfying the condition that the distance from region
boundary point (initially, seed point) and the point is
within a certain threshold is added to the region.

4.4 Rendering Model Generation (Fig. 2 (A13))
A) Splat

Quadrilateral splat is generated for planar object
points. According to regularity of laser scanned point
clouds, quadrilateral shapes are selected because it is
suitable for filling gaps in object space. First, adjacent
points p1

i …p4
i of point i are searched along the principal

directions in order to create splats. As shown in Fig. 6(a),
a point satisfying the conditions

 ,

,min
,)(

dki

kik

ki

δ

δθ

<−

−

>⋅−

pp

pp
dpp

(5)

is selected as an adjacent point of point i related to
direction vector d.
By using ±e1

i , ±e2
i as d in above conditions, four

adjacent points can be obtained. Next, two difference
vectors of adjacent points v1

i =p1
i − p3

i , v2
i =p2

i − p4
i are

generated. Then, corner points are represented by the
sum of two difference vectors weighted by half of the
distance between adjacent points and point i, as shown in
Fig. 6(b).

B) Line Segment

For linear object segments, first, a line is created so
that the line passes the barycenter of segment points and
has an average direction of eigenvectors {e1

i } of
segment points as a directional vector. Then, segment
points are projected onto the line, and line segments are
generated connecting projected points in sequence.

C) Mesh

Triangular mesh is generated for other object
segments. There have been various studies on surface
reconstruction from point clouds [1-3]. In our
implementation, a method based on tetrahedralization is
used [1].

5. Hierarchical Point Cloud Representation
5.1 Octree

When the viewpoint is far from the scene,
view-dependent LOD of point clouds is used in
rendering. LOD is based on quantized points and octree
structure.

An octree is a hierarchical representation of given
point cloud and is adopted for efficient rendering of a
scene by points. The hierarchy is generated by space
subdivision. In Fig. 7, a quadtree is illustrated instead of
an octree for simplicity. An octree is a tree data structure
which is used to partition a 3D space by recursively
subdividing it into eight sub-spaces. Each node has eight
children nodes. The root node is associated with a
minimum axis-aligned bounding cube of the given point

Figure 5. Linear object segment generation

Figure 6. Splat generation

ip kp

dδ

i
1eθδ

(b) Segment integration

Barycenter

Distance

(a) Linear object segment generation

Integration

ip
kp

ii
11eλ

ik pp −

ii
33eλ

i
1v

i
2v

i
1pi

3p

i
4p

i
2p

ip

i

i

i
i

i

i

i
i

i
2

2
2

1

1
1 2

1
2
1

v
vpp

v
vppp −+−+

Splat

ii
22eλ

(a) Adjacent points detection (b) Splat generation

Search range

：Adjacent point

dδ
θδ

clouds. Each children node is associated with each
uniformly subdivided cube of the parent node. The leaf
node has points in the associated cube. Each node is
recursively subdivided until the number of points stored
in it becomes less than a certain number, nmax . For
example, Fig. 7 shows the case of nmax=10. An octree
structure enables efficient rendering and determining
LOD as described in a latter section.

5.2 Quantization

LOD techniques [12,13] are necessary for efficient
rendering of large scale scenes. In order to achieve an
LOD representation, we use quantized points. As shown
in Fig. 8, first, we create a quantization grid in each inner
node of an octree by uniformly dividing its cube into
quantization grid cells. If there are one or more points in
each quantization grid cell, only one representative point
is selected randomly and is stored in the node. In this
way, uniformly down-sampled points can be stored in
each inner node.

6. LOD Rendering

As mentioned in section 3, hierarchical point
rendering using octree structure and quantized points is
done when the viewpoint is far from the scene. When the
viewpoint is moved closer, a rendering model generated
by several primitives is rendered. Proposed LOD
rendering is done as follows.

When the viewpoint is far from the scene, a depthfirst
search of the octree is performed during rendering. Depth
traversal is done until the node satisfies the condition
s/d < δ, and the points of the node are used for rendering,
where s is the side length of quantization grid cell, d is
the distance from viewpoint to barycenter of the points of
each octree node, and δ is a threshold (Fig. 9). When
the viewpoint is moved away from the scene, value d
becomes large and more down-sampled points in upper
level nodes are rendered. When the viewpoint is moved
closer to the scene and the value s/d exceeds the
threshold, more detailed points in deeper nodes are
rendered. In addition, when the viewpoint is moved
closer and closer, and the value s/d′ exceeds the
threshold, where d′ is the distance between the
viewpoint and the barycenter of the nearest node, a
rendering model generated from several primitives is
rendered. As a result, real-time view-dependent LOD can
be achieved. In current implementation, a rendering
model which represents the scene including all objects is
used for rendering (local rendering of the model is not
done).

7. Results and Evaluations
7.1 Test Data Set and Implementation

The data set used in this research was scanned by
MMS in urban area which included 1,585,985 points.
Our proposed method is implemented on a standard PC
with Intel Core i7 2.93GHz, 8GB RAM, and GeForce
GTX 470 graphics board using OpenGL for rendering.

7.2 Point Cloud Rendering Results
Figure 10 shows the rendering results using our

method and other methods. When a viewpoint is far from
the scene, it can be rendered with fewer points by LOD
rendering while maintaining a certain FPS around 60.
Results of point rendering at different viewpoints are
shown in Fig. 10(a)-(b). Efficient rendering is achieved
using LOD rendering of points.

For viewpoints close to the scene, the rendering
model is used in rendering. The rendering model
generated by our method is shown in Fig. 10(c). The
number of splats, line segments, and mesh models are
1,256,277, 145,868, and 413 (consist of 558,789
triangles) respectively. Figures 10(d), (e), (f) show
rendering results using points, splats, and mesh
respectively. Compared with the rendering result using
only points (Fig. 10(d)), our result (Fig. 10(c)) gives
easier understanding of the scanned environment,

Figure 7. Hierarchical point cloud representation

Figure 8. Quantization

Figure 9. Each parameters used for LOD rendering

Root node

Leaf node

Inner node

g1

1 20

07

211

20

0

2
2

7

7

Number of points
in each node

10max =n

Cell

Quantization grid

Quantized point

g1

1

Quantization grid

cell

: Distance from
view point
to barycenter

d s

View point
Barycenter of the points

View frustum

: Side length
of the cell

Figure 10. Result of point cloud rendering

(e) Rendering by splats without point classification

(d) Rendering by points(c) Viewpoint: close
Primitive: point, line segment, splat, mesh

(f) Rendering by mesh without point classification
(Ball Pivoting [2])

(b) Viewpoint: middle, Primitive: point(a) Viewpoint: far, Primitive: point

Rendering points：83,264 Rendering points：1,320,539

C

F

E

B

A

D

Power
Line

Road

(g) Another view of (c) (h) Another view of (e) (i) Another view of (f)

D

C

F

E

B

A

especially at the region near the viewpoint, because the
gaps at the ground and the vegetations are filled by splats
and meshes. Unnatural vegetations can be seen in the
rendering result using only splats (Fig. 10(e)) because it
is difficult to reconstruct complex 3D objects using
planar primitives from coarse points. Moreover, in the
result, splats are generated at power lines (Fig. 10(h)).
On the other hand, in our results, undesired splats are not
generated at the power lines, because the line segment is
used for rendering them with the help of point
classification. Rendering result using only mesh (Fig.
10(f)) also shows unnatural views at power lines (Fig.
10(i)). Moreover, mesh is not generated at low point
density areas such as the edge of roads (Fig. 10(i)) and
building surfaces. In such areas, the view is improved by
splats (Fig. 10(g)). Figure 11 shows other rendering
results from different viewpoints of the scene (Fig. 11(a),
(b)) and rendering results of another data set (Fig. 11(c),
(d)) scanned by TLS. Compared with the rendering
results using only points, the results using the rendering
models give easier understanding of the scene. However,
unnatural view around the boundary of the buildings and
windows can be seen in Fig. 11(b). Therefore, quality
improvement of the model using the recognition of
object boundaries is required.

The processing time for generating the rendering
model from the MMS data set was 462 [s]. FPS for
rendering using point hierarchy was around 60, and for
rendering model was 1-3. Improvement of a rendering
speed while using rendering model is one of our future

works.

8. Conclusions and Future Works
In this paper, we developed a method for rendering

model generation by adaptive selection of rendering
primitives (point, line segment, splat, mesh) in order to
support visual understanding for point clouds of large
scale environments. Our method is based on the
dimensional analysis of local point distribution. First, each
point is classified as either a linear object point, a planar
object point, or as an other object point based on PCA and
region growing. Next, linear object segments and other
object segments are generated based on the results of point
classification. Finally, a rendering model consisting of a
set of line segments, splats and meshes is generated from
the result of point classification and segmentation. In
addition, hierarchical representation of point clouds based
on octree structure and quantization is described for LOD
of point clouds. We confirm that our method provides
better viewing of scanned large scale environments
compared to simply using a single type of primitive.

In the future, we will introduce blending techniques
for splats, other types of primitives to render a scene
more effectively, and LOD of a rendering model.

Acknowledgements
The data is provided from TOPCON Corporation,

Koishi Corporation, and The Japan Society for Precision
Engineering, Cyber Field Construction Technique
Research Sectional Committee.

Figure. 11 Other results of point cloud rendering

(a) Rendering by points (b) Rendering model

(d) Rendering model(c) Rendering by points

References
[1] J. D. Boissonnat, 1984, Geometric Structures for

Three-Dimensional Shape Representation, ACM
Transactions on Graphics, Vol.3, No. 4, pp.266-286

[2] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva,
and G. Taubin, 1999, The Ball-Pivoting Algorithm for
Surface Reconstruction, IEEE Transactions on
Visualization and Computer Graphics, Vol.5, No. 4,
pp.349-359

[3] N. Amenta, M. Bern, and M. Kamvysselis, 1998, A
New Voronoi-Based Surface Reconstruction Algorithm,
SIGGRAPH '98 Proceedings of the 25th annual
conference on Computer Graphics and interactive
techniques, pp.415-421

[4] M. Levoy, and T. Whitted, 1985, The Use of Points as
Display Primitives, Technical Report TR 85-022

[5] L. Westover, 1990, Footprint Evaluation for Volume
Rendering, SIGGRAPH '90, pp.367-376

[6] M. Nakagawa, 2010, LiDAR VR Generation with
Point-based Rendering, UDMS2011 (28th Urban Data
Management Symposium), pp.223-230

[7] J. Shade, S. J. Gortler, L. He, and R. Szeliski, 1998,
Layered Depth Images, SIGGRAPH '98, pp.231-242

[8] D. Lischinski and A. Rappoport, 1998, Image-Based
Rendering for Non-Diffuse Synthetic Scenes,
Rendering Techniques '98, pp.301-314

[9] C. F. Chang, G. Bishop, and A. Lastra, 1999, LDI Tree:
A Hierarchical Representation for Image- Based
Rendering, SIGGRAPH '99, pp.291-298

[10]H. Pfister, M. Zwicker, J. van Baar, and M. Gross, 2000,
Surfels: Surface Elements as Rendering Primitives,
SIGGRAPH 2000, pp.335-342

[11]M. Zwicker, H. Pfister, J. van Baar, and M. Gross, 2001,
Surface Splatting, SIGGRAPH 2001, pp.343-352

[12] S. Rusinkiewicz, and M. Levoy, 2000, QSplat: A
Multiresolution Point Rendering System for Large
Meshes, SIGGRAPH 2000, pp.343-352

[13] M. Wand, A. Berner, M. Bokeloh, A. Fleck, M.
Hoffmann, P. Jenke, B. Maier, D. Staneker, and A.
Schilling, 2007, Interactive Editing of Large Point
Clouds, Eurographics Symposium on Point-Based
Graphics, pp.37-46

[14] N. Vandapel, D. F. Huber, A. Kapuria, and M. Hebert,
2004, Natural Terrain Classification Using 3-D Ladar
Data, IEEE International Conference on Robotics and
Automation, pp.5117-5122

[15]J. Demantke, C. Mallet, N. David, and B. Vallet, 2011,
Dimensionality Based Scale Selection in 3D LiDAR
Point Clouds, Proceedings of ISPRS Workshop Laser
Scanning 2011

