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Abstract:  

The Mobile Laser Scanning (MLS) system can acquire point clouds of urban environments including 

roads, buildings, trees, lamp posts etc. and enables effective mapping of them. With the spread of the 

MLS system, the demands for the management of roads and facilities using MLS point clouds have 

increased. Especially, pole-like objects (PLOs) such as lamp posts, utility poles, street signs etc. are in 

high demand as facilities to be managed. We propose a method for detecting PLOs from MLS point 

clouds and classifying them into three classes: utility poles, lamp posts, and street signs. Our detection 

method is based on the feature extraction using point classification by Principal Component Analysis 

(PCA). On the other hand, our classification method is based on not only shape features of the PLOs, 

but also context features which are derived from the surrounding PLOs distributions. In order to 

evaluate the accuracy of PLOs detection and classification through our method, we applied our method 

to MLS point clouds of urban environments. 

 

Keywords: Mobile Laser Scanning, Point Cloud, Pole-like Object, Object Recognition, Object 

Detection, Object Classification 

 

 

1. Introduction 

With the development of inexpensive and high 

accuracy laser scanner devices, the Mobile Laser 

Scanning (MLS) system which is a vehicle mounted with 

these devices, GPS, INS, cameras, etc. has been widely 

used. The MLS point clouds can be useful not only for 

building and city modeling, but also for managing 

various facilities in urban environments. In particular, 

pole-like objects (PLOs) such as utility poles, lamp posts 

street signs, and etc. are in high demand as facilities to be 

managed, and it is required to recognize them from urban 

MLS point clouds. However, manually recognizing these 

PLOs from large point clouds data requires a great deal 

of time and cost. Therefore, for efficient management of 

facilities, it is necessary to automatically recognize PLOs 

from MLS point clouds.  

Much research on PLOs detection and classification 

from MLS point clouds has been conducted. Existing 

methods are based on machine learning [3][6], the 

arrangement and position of measurement points [7][8], 

or the knowledge according to the PLO [1][10]. These 

methods have some problems, such as they require a lot 

of training data, they cannot recognize PLOs with 

different radii and tilt angles, and they are difficult to 

classify only using the shape features. 

In this paper, we propose an algorithm to 

automatically detect PLOs from MLS point clouds and to 

classify them into three classes: utility poles, lamp posts, 

and street signs (Fig.1). Our detection method is based 

on Laplacian smoothing using the k-nearest neighbors 

graph, Principal Component Analysis (PCA) for 

recognizing points on the PLOs, and thresholding for the 

degree of PLOs (A-1). By using smoothing and PCA, 

robust detection of the PLOs with various radii and tilt 

angles is realized. Our classification method is based on 

not only shape features of the PLOs, but also context 

features which are calculated from the surrounding PLOs 

distributions (A-2). According to the shape features, we 

focused on the height, number of the parts segments, and 

parts structure types of the PLO. However, in some cases 

it is difficult to classify PLOs only using the shape 

features due to the similarity of the shape of the specific 

PLOs. By using the context features, robust classification 

is realized. 

Details of the existing method for PLOs detection and 

 

Figure 1 Proposed PLOs Detection and Classification 

method 
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classification are described in chapter 2. Details of the 

proposed PLO detection and classification method are 

described in chapter 3 and chapter 4 respectively, and the 

results of our method are described in chapter 5. 

 

2. Related Works 

Existing research on automatically detecting or 

classifying objects, including PLOs, are introduced in 

this chapter. 

Based on machine learning, Golovinskiy et al. 

propose a method to classify various objects such as cars, 

streetlights, trees, fire hydrant, and etc. from the 

combination of MLS and ALS point clouds [3]. A major 

feature of their method is high precision segmentation by 

the graph cut algorithm. To classify objects, they input 

feature quantities of objects into the Support Vector 

Machine (SVM). As learning data, they used a part of the 

input data which are classified manually. In order to 

increase the recognition rate, a sufficient amount of 

learning data must be required. They also indicated that 

the better shape descriptors and classifiers are required 

for better results. As a similar method using machine 

learning, Lai et al. attempted to classify objects in MLS 

point clouds by using a lot of 3D data that exists on 

World Wide Web as learning data [6]. In the learning 

method, sufficient training data based on input point 

clouds is necessary for suitable learning. 

Based on the arrangement and position of 

measurement points, Manandhar et al. detected vertical 

poles from MLS point clouds [8]. In their research, the 

MLS point clouds consisted of vertical scan lines and 

vertical poles by extracting vertical line segments from 

individual scan lines. Their detection method was limited 

to the extraction of the vertical poles. Due to this limit, 

the method cannot detect tilted poles and is not 

applicable to arbitrary point clouds. Lehtomaki et al. 

extracted sweeps that were expected to be measured 

PLOs from MLS point clouds [7]. Then they found 

another sweep either below the current sweep or above, 

and made them a cluster. However the method cannot 

detect PLOs with a specific radii and limited point 

densities. 

Based on the knowledge, Lam et al. detected PLOs 

from MLS point clouds, and classified them into lamp 

posts and utility poles [1]. Their detection method was 

devised based on the condition that PLOs are 

perpendicular to the road plane. Their classification 

method relied on the branch of the lamp post. However, 

they mentioned that some utility poles also have 

structure that extends from the vertical column, where 

the power line is attached. In such condition, it was 

difficult to classify the PLOs. Pu et al. detected PLOs 

from MLS point clouds, and classified them into bare 

poles, trees, traffic signs, and other poles [10]. In their 

classification method, the straight pole (supporter) of the 

PLO was removed first. When remaining point cloud 

was non-planar, the PLO was classified as trees. When 

the remaining point cloud was planar, the PLO is 

classified as traffic sign if the shape was rectangular or 

circle. If no points remained, the PLO was classified as 

bare pole. 

In this paper, we propose a robust detection method of 

the PLOs with arbitrary tilt angles and radii from MLS 

point clouds without learning data, by using smoothing 

and PCA. Additionally, we propose a robust 

classification of the PLOs by using the shape features 

and context features. 

 

3. Pole-like Objects Detection Method 

3.1 Overview of the Method 

The proposed algorithm is shown in Fig.2. In the 

method, we assume that ground points are already 

removed from given point clouds. The algorithm of our 

method consists of four steps. First, the input point 

clouds are segmented, as the result the points estimated 

on each object are grouped (B-1). Second, smoothing is 

applied to each segment (B-2). Third, each point is 

classified into the points on the PLOs, on the planar 

objects, and on other objects (B-3). Finally, the degree of 

the PLOs of each segment is evaluated, and the segments 

of the PLO are extracted by thresholding (B-4). 

 

3.2 Segmentation 

Many segmentation techniques of point clouds have 

already existed ([2], [9], and [11]). In our 

implementation, we adopt the simple segmentation 

method by connecting the nearest neighbor points. As a 

result, the segment is composed of the point set of the 

connected k-nearest neighbors graph. The graph is 

generated to sequentially generate an edge among the 

k-nearest neighbors between the point i and points 

included in a sphere with a radius r centered at point i. 

Even if the neighbors included in the sphere are less than 

k, we do not expand the radius r. In our experiment, k=15, 

r=0.5m. 

 

3.3 Endpoint Preserving Laplacian Smoothing 

The robust extraction of points on PLOs by PCA 

described in next section is difficult because of the 

measurement noises, the bias of the point distributions, 

 

Figure 2 PLOs Detection Method 
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and the differences of the PLO radius. Therefore, to 

improve the classification rate of the points on the PLOs 

by PCA, endpoint preserving Laplacian smoothing is 

applied to the k-nearest neighbors graph in our method.  

Generally, smoothing is applied for the purpose of 

removing the noise of the measurement data. On the 

other hand, recently, smoothing is used for other 

purposes. For example, some methods of skeleton 

extraction from point clouds have been proposed [4]. The 

purpose of their research is to extract the skeletons of 

wire-objects, and the recognition of the objects is not 

focused on. 

In our method, smoothing is applied to the MLS point 

clouds in order to improve the classification rate of the 

points on the PLOs by the PCA and to distinguish points 

on the PLOs from the ones on the planar objects, and the 

others. We focus on the exaggeration and the 

degeneration of the object shape features based on 

Laplacian smoothing which is an operation that moves 

each point to the centres of the neighbours. Laplacian 

smoothing makes the PLOs into a thin pole shapes 

through shape degeneration. As the result, the point 

distributions of the PLOs come to be degenerated into a 

one dimensional distribution (Fig.3). In addition, 

measurement noises are removed. Therefore, applying 

the Laplacian smoothing to the scan data raises the 

classification rate of the PLO points by the PCA. 

Laplacian smoothing is done by applying Eq.(1): 

iii ppp  
,
                            (1) 

where   
  is the position of point i after smoothing,    

is the position of point i, λ is the smoothing strength 

(0 λ 1),     is the Laplacian, and it is given by the 

Eq.(2): 
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where     is the positive weight (          ),    is a 

set of the neighbors of point i. The point clouds of PLOs 

with various radii can be degenerated into a one 

dimensional distribution by iteratively applying Eq.(1), 

and then PLOs with various radii can be detected. 

However, Laplacian smoothing has the problem that 

the branching structures of the PLOs are lost. This causes 

the decrease of the classification rate in the following 

PLO classification step. To solve this problem, we 

propose the endpoints preserving Laplacian smoothing, 

which controls displacements during smoothing 

according to the distribution of the neighbors of a point. 

At the endpoint, the neighbors are distributed in one 

direction. On the other hand, the neighbors are 

distributed in all directions at the inner point. From this 

observation, the displacements during smoothing are 

controlled so as to preserve the endpoints according to 

the distribution of the neighbors. We evaluate whether 

point i is the endpoint or not using Eq.(3): 
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where i* is a set of neighbors of point i, 

},,|),{( * kjikjkjVi  , angle(j,i,k) is the angle of 

j,i,k. If the point i is the endpoint, angle(j,i,k) is small 

(Fig.4 left)，then the e(i) becomes small. On the other 

hand, if the point i is far from the endpoint, some 

angle(j,i,k) are large (Fig.4 right)，then e(i) becomes 

large. 

Displacements in smoothing can be controlled by 

using the smoothing strength λ. Additionally in order to 

 

Figure 3 Examples of degenerated objects in mesh 

model by smoothing 

 

Figure 4 Neighbors' distribution at the endpoint and 

the inner point 
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Figure 5 Comparative result of smoothing 
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reduce influences of the distant points during smoothing, 

we use weight  ij which is in inverse proportion to the 

distance between points. Endpoints preserving Laplacian 

smoothing is done by the equations (4), (5), and (6): 
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Figure 5 shows the comparative result of the Laplacian 

smoothing and endpoint preserving Laplacian smoothing 

for the same utility pole. Fig.5(a) shows the input point 

clouds of the utility pole. Fig.5(b) and Fig.5(c) show the 

results of the Laplacian smoothing and endpoint 

preserving Laplacian smoothing respectively. After the 

endpoint preserving Laplacian smoothing, the branching 

structures still remain. During iterating smoothing, the 

distribution of the points on the PLOs with various radii 

becomes one dimension. In our experiment, the number 

of iterations of the smoothing is 40. 

 

3.4 Point Classification 

Each point is classified into three types which are the 

points on the PLO, the points on the planar object, and 

the others. The local point distributions are evaluated by 

calculating eigenvalues and eigenvectors of the 

variance-covariance matrix related to the point i and its 

neighbors. The variance-covariance matrix Mi of the 

point i is shown in Eq.(7): 
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where    is the position of point i,    is a set of the 

neighbor points of point i,     is the barycenter of i*. We 

denote eigenvalues of the Mi by λ 
 

, λ 
 
 and λ 

 
 

(λ 
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 λ 

 
) and the corresponding unit eigenvectors by 

  
 ,   

 , and   
  respectively. The local distribution of 

neighbors of point i is figured out by the magnitude 

relation of the eigenvalues.  

When point i is on the PLO, the maximum eigenvalue 

 λ 
 
 is very large compared with other eigenvalues λ 

 
, λ 

 
, 

and the eigenvector   
  represents the axial direction of 

the PLOs. On the other hand, when point i is on the 

planar object,  λ 
 

 and  λ 
 

 become relatively large 

compared with λ 
 
. When point i is on the other object, 

there are not so many differences between the three 

eigenvalues. 

In order to investigate the magnitude relation of 

eigenvalues, we compute the dimensionality feature di 

using Eq.(8) [12]: 

i
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,
                       (8) 

where   
 
,   

 
, and    

 
 are the distribution features, and 

defined by Eq.(9): 

iiiiiiii SSS 33322211 ,,   　　　
,
         (9) 

where α, β are the adjustment coefficient. When point i is 

on the PLO or planar object or other object, di becomes 1, 

2, and 3 respectively. Figure 6 shows the results of the 

point classification. Fig.6(a)-(c) shows the utility pole, 

street sign, and tree respectively. The top row represents 

the input point clouds. The bottom row represents the 

point classification results after smoothing. In our 

experiment, α and β are set to 10, 100 respectively. 

 

3.5 PLOs Detection 

Finally by evaluating the geometric properties and 

classified points of the segments, each segment is 

classified into PLO and others. As the minimum 

requirement for the PLO, we assume that the height of 

 

(green: points on the PLO objects, orange: points on 

the planer objects, black: points on others) 

Figure 6 Results of the point classification 

 

(green: points on the PLO objects, orange: points on 

the planer objects, blue: points whose neighbors are 

distributed vertically) 

Figure 7 Example of the point clouds of a street sign 
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the segment is more than 2m which is higher than 

average human height, and that the number of points of 

the segment is over 50. Hence, the segments which do 

not satisfy these conditions are recognized as other type 

objects. In addition, the segment in which over 70% of 

points are the ones on the other objects is recognized as 

other objects, because the PLOs we intended consist of 

poles and plane surfaces. For each remaining segment, 

the degree of the PLOs is evaluated by Eq.(10): 
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            (10) 

where   ,    are weights.    is a set of points of 

segment n.    is a set of points on the PLOs, and 

included in   .    is a set of points that have almost 

vertical   
 , and included in   . In our experiment, 

  =1.0,   =2.0. 

An example of the sets of points Sn, Cn, and Dn for a 

street sign is shown in Fig.7. The first term of Eq.(10) 

represents the ratio of the points on the PLOs in the 

segment. The second term of Eq.(10) represents the ratio 

of the points whose neighbors are distributed vertically 

in the points on the PLOs. The degree of the PLO for 

each segment is evaluated by the weighted sum of the 

two terms. Figure 8 shows the histogram of the value fn 

about various objects in MLS point clouds. The value fn 

becomes lager for the almost segments of PLOs. In our 

experiment, because it was observed that the segments of 

the PLO had fn over about 45, τ is set to 45. Finally, the 

segments which have fn larger than the threshold are 

recognized as PLOs. 

 

4. Pole-like Objects Classification Method 

4.1 Overview of the Classification Method 

The proposed classification algorithm is shown in 

Fig.9. The algorithm of our method consists of four steps. 

First, the supporters of the PLOs and attached parts to the 

supporters are segmented (B-5). As the result, the points 

on each attached part are grouped. Second, the 

membership values are calculated using the membership 

functions of the utility pole, lamp post, and street sign, 

which are defined by the height, the number of the 

attached parts, and the structure type of the attached parts 

of the PLO (B-6). Third, the context features using the 

relative positions of surrounding PLOs are calculated 

(B-7). Finally, using the membership values and context 

features, the PLOs are classified into utility poles, lamp 

posts, and street signs (B-8). 

 
4.2 Segmentation of Each PLO 

In each PLO, the attached objects (parts) to the 

supporters can be the important classification cues. 

Therefore the supporters and attached parts are 

recognized from the point clouds of PLO. 

In this step, the results of the smoothing and the point 

classification are used (described in section 3.3 and 3.4 

respectively). Line RANSAC is applied to the points 

 

Figure 8 Histogram of fn, and objects in MLS point clouds 

 

 

Figure 9 PLOs Classification Method 

 

(a)               (b) 

 (a): lamp post with signals 

 (b): utility pole composed of two supporters 

(pink points: points on the supporter of PLOs, pink line: 

fitting line of line RANSAC, label number: attached part 

segment number) 

Figure 10 Results of the segmentation of the supporters 

and attached parts 
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whose neighbors are distributed vertically (that is, the 

points that have possibility to being on the supporters, as 

shown in Dn of Fig.7). The points which lie within the 

distance σ from the fitting line are recognized as the 

points on the supporter of the PLO regardless of its 

dimensionality feature. Figure 10 shows the results of the 

supporter recognition. This process is repeated until the 

number of points which are fitted to the line becomes 

less than δ1 in order to recognize more than two 

supporters. Since the distances from the fitting line are 

calculated using points after smoothing, robust supporter 

recognition of the PLOs with various radii is realized. 
In order to analyze each attached part of the PLO, the 

segment for each part is extracted. First, k-nearest 

neighbors graph is created for the points on the PLO 

without the points on the supporters. Then, each 

connected component is recognized as a part segment. 

Fig.10 shows the result of the attached part segmentation. 

In our experiment, σ and δ1 are set to σ=0.20m and δ1=50 

respectively. 

 

4.3 Shape Features Evaluation 

Each attached part structure can be the important 

feature for classifying the PLOs. The point set includes 

more than δ2 (δ2=10) and they have the same 

dimensionality feature di (calculated in section 3.4) on 

the part segment are extracted. The point set is classified 

into pole elements, plane elements, and volume elements 

if di of points in the point set is 1, 2, and 3 respectively. 

Each attached part is classified into pre-defined eight 

types of structures shown in Fig.11 according to the kind 

of elements contained in the part. 

In our research, PLOs are classified into utility poles, 

lamp posts, and street signs. In many cases, PLOs have 

standard heights, therefore the height of PLOs become 

the feature for classifying. Additionally, in many cases, 

the utility poles have a lot of attached parts from their 

roles. On the other hand, the lamp posts and street signs 

have few attached parts. Therefore the number of the 

attached parts of the PLOs becomes the feature for 

classifying. Furthermore, the structures of the attached 

parts of PLOs are limited to some extent for every class, 

therefore the attached parts types become the feature for 

classifying.  

The membership values of the utility pole (up), lamp 

post (lp), and street sign (ss) are evaluated by Eq.(11) 

using the height, the number of the attached parts, and 

the structure type of the attached parts of the PLOs: 
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Where  
 

    
    

 

    
        

 

    
are the membership values of 

the utility pole, lamp post, and street sign respectively. 

Table 1 shows the parameters of each membership 

function. Sh, Spn, and Spt are the height of the PLO 

segment, the number of the part segment in PLO 

segment, and the set of the attached parts types in the 

PLO segment respectively.   
     (Spt) is a function that 

counts the number of the attached parts included in the 

parts structure types in T shown in Table 1. If there is no 

attached part, Spt is 0. Parameters in Table 1 were set 

based on the observation of acquired MLS point clouds 

and catalog specification of the products. These three 

membership values are normalized. 

However, it is difficult to accurately classify PLOs 

only using the membership values due to the similarity of 

the shape of the specific PLOs. To solve the problem, we 

introduce the context features. 

 

4.4 Context Features Evaluation 

The relative position of a PLO to its surrounding 

PLOs is a useful cue for classification. Utility poles, for 

example, are found on side of a road at regular intervals. 

We introduce autocorrelation as the context feature. 

The procedure of context features evaluation consists 

of four steps. 

i) The regular 2D-grid Gi centered at the position of the 

supporter of the PLO segment Si is generated. Each 

cell of the grid is a square, and the length of its side is 

δ[m]. The numbers of the rows and the columns are nr 

and nc respectively. Each grid direction is adjusted to 

the direction of the nearest road of the Si. To find the 

direction of the road, PCA is applied to road point 

clouds within the wide range (sphere with radius rg 

centered at the Si). The nearest road direction of the 

PLO is calculated as the eigenvector e1 corresponding 

 

Figure 11 Pre-defined part structure types 

Table 1 Parameters of the membership functions 
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to the max eigenvalue λ1. In our experiment, nr=6, 

nc=20, δ=6.0m, and rg=20m. 
ii) For all PLO segment Sj on Gi, its membership values 

 
 

    
   
 

    
       

 

    
 are accumulated to the cell 

including the Sj. As a result, as shown in Fig.12, three 

surrounding PLOs distribution maps (matrices)  

  

  
    

  
         

   which have the surrounding PLOs 

membership values  
 

    
   
 

    
        

 

    
 at each cells 

respectively are generated. 

iii) Define U, V, and W as the sets of utility poles, lamp 

posts, and street sings which can be clearly classified 

only using the membership values. In our experiment, 

U={Sk |  
 

    
> γ},V={Sk |  

 

    
> γ},W={Sk |  

 

    
> γ}, 

where γ is a threshold for membership values. 

According to the U, V, and W, the average 

surrounding PLOs distribution maps (matrices) 

            

  
,              

  
, and              

   (true_class∈
{up,lp,ss}) are generated using the Eq.(12):  
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The value of cell of    
  is the probability of 

existence of the object of the class 'a' when center 

object of the grid belongs to the class 'b'. In our 

experiment, γ=0.60. 

iv) The similarities between   
      and             

      are 

defined as the context feature, and it is evaluated by  

Eq.(13): 
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where   
 

    
     

 

    
         

 

    
 are the context features of 

the utility pole, lamp post, and street sign respectively. 

The <x, y> is the sum of products of the values of 

each corresponding cell of x and y. The range of the 

context features are adjusted to [0,1] by 

   
 

       
     

 

       
                       

       
. 

 

4.5 PLOs Classification 

Finally, the PLOs are classified into utility poles, lamp 

posts, and street signs, using the membership values and 

context features by the Eq.(14):  

 class

i

class

isslpupclass

class

i ffS ˆmaxarg },,{   ,     
(14) 

where   represents the positive weight, and in our 

experiment,  =0.25. 
5. Results 

5.1 Data and Measurement System 

Point Clouds of urban environment acquired by MLS 

system shown in Table 2 were used in our experiments 

 

Figure 12 Surrounding PLOs distribution map centered 

at the PLO segment Si and Sj 

 

Table 2 Data used in the article 

Data 
Measurement 

Place 

Number of 

Point 

(million) 

Measurement 

System 

I Kyoto, Japan 2.5 MMS-X 

II Kyoto, Japan 1.0 MMS-X 

 

 
(a) input data I 

 

(b) output in our PLOs detection method 

Figure 13 Result of the PLOs detection 

 

iS
Road ･･･Utility Pole

･･･Lamp Post

･･･Street Sign

jS

iS

up

im lp

im
ss

im

jS jS jS

up

jm
lp

jm
ss

jm

Colors on the maps represent the utility pole (red), lamp post (green) 

and street sign (blue) respectively, indicating that membership values 

are so big that they are deep-colored. 

iG

jG





iS iS



[5]. As described in section 3.1, the ground points were 

removed manually from the given data. In our methods, 

each parameter in the algorithm is determined based on 

the experiments. Our method is implemented using 

standard PC (OS: Windows7 64bit, CPU: Intel Core i7 

3.0 GHz, RAM: 6GB). 

 

5.2 PLOs Detection Result 

Figure 13 shows the result of the PLOs detection by 

our method. In Fig.13(a), there are a lot of various 

objects such as trees, buildings, cars, and PLOs. In 

Fig.13(b), the PLOs such as lamp posts and utility poles 

are detected. However, some other objects such as trees 

are included. The detection accuracy of the PLOs is 

shown in Table 3. The number of correct PLOs [B] was 

manually verified by using the photograph. [G] is the 

number of objects which were recognized as PLOs 

though they are not the PLOs. The average accuracy of 

the PLO detection is 69.7% for correct PLOs. On the 

other hand, the average accuracy of PLOs detection is 

92.2% for correctly created PLOs. 

Our detection method is designed for correctly 

segmented point clouds, therefore detection failed for the 

incorrect segments as shown in Fig.14. The [F] in Table 

3 shows our method works well for the correctly created 

segments. In the future, we will apply an appropriate 

segmentation method such as [2] to the inputs and 

evaluate the detection rate. Processing times of the PLOs 

detection are shown in Table 4. 

 

5.3 PLOs Classification Result 

Table 5 shows the accuracy of the PLOs classification 

only using the membership values. From the table, the 

average accuracy of PLOs classification is 66.7% for 

PLOs which are correctly segmented in the PLOs 

detection algorithm. On the other hand, Table 6 shows 

the accuracy of the PLOs classification using both 

membership values and context features. From the table, 

the accuracy of classification related to the utility pole is 

improved. Here it should be noted that the context 

features could be calculated properly if there is regularity 

in the distribution of PLOs. In our experiment, because 

such regularity is seen in Data I, the classification 

accuracy was improved. Figure 15 shows the results of 

the PLOs classification of Data I. Top of the figure 

shows the result only using the membership values, on 

the other hand, the bottom of the figure shows the result 

using not only the membership values but also context 

features. From comparison of the results, context features 

work well. Processing times of the PLOs classification 

are shown in Table 7. 

 

6. Conclusion 

In this article, we developed an algorithm for 

automatically detecting PLOs with tilt angles and various 

radii from MLS point clouds in urban environments, and 

classifying them into three classes: utility poles, lamp 

posts, and street signs. Our detection method is based on 

the smoothing and principal component analysis for 

point clouds, and the evaluation of the degree of PLOs 

for the segments using the point classification result. The 

Table 3 Accuracy of the PLOs detection method 

Data I II 

[A] The number of total segments 
satisfying the minimum requirements 

209 92 

[B] The number of correct PLOs 63 25 

[C] The number of correctly 
segmented PLOs 

52 17 

[D] The number of correctly detected 
PLOs  

50 15 

[E] Detection Rate within correct 
PLOs (=[D]/[B]) 

79.3% 60.0% 

[F] Detection Rate within correctly 
segmented PLOs (=[D]/[[C]) 

96.2% 88.2% 

[G] The number of false detection 24 13 

 

 

Figure 14 Undetectable PLOs by our detection method 

Table 4 Running time of PLOs detection method 

Processing I II 

Creation of kd tree 17.1 5.9 

Segmentation 45.7 24.6 
Smoothing 28.1 13.7 

Point classification 17.7 17.0 

PLOs detection 0.05 0.02 

Total running time of detection 108.7sec 61.2sec 

 

Table 5 Accuracy of the PLOs classification only using 

the membership values* 

 
Algorithm  

Classification 
Accuracy 

up lp ss Total 
Classification 

Rate 

True 
Class 

up 39 15 0 54 72.2% 

lp 1 7 1 9 77.8% 

ss 0 1 1 2 50.0% 
 Total 40 23 2 65 66.7% 

*up, lp, and ss represent the utility pole, lamp post, and 

street sign respectively. The PLO segments of true 

class are used from [D] in Table 2. 

 

Table 6 Accuracy of the PLOs classification using the 

membership values and context features* 

 Classification Acuracy 

Class 
using membership 

values only 

Using membership 
values and context 

features 
up 39/54 (72.2%) 44/54 (81.5%) 

*lp, and ss cannot be evaluated due to few samples. 



PLOs detection rate was on average 92.2% for correctly 

segmented PLOs. Our classification method is based on 

shape features and context features of the PLOs. In our 

method, the shape feature of each PLO is calculated from 

the height, number of the parts segments, and parts 

structure types of the PLO. Context features are 

calculated from the surrounding PLOs distributions. By 

only using the membership values, the average accuracy 

of PLOs classification was 66.7% for PLOs which are 

correctly segmented in the PLOs detection algorithm. By 

using both membership values and context features, the 

accuracy of the classification was improved to 81.5% 

related to the utility pole. 

Future works are to improve the detection and 

classification rate by adopting or developing an 

appropriate segmentation method, and to apply our 

method to various MLS point clouds and evaluate its 

performance. 
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Figure 15 Effectiveness of the context features 

 

 

(b) result of the classification using membership values and context features

(a) resultof the classification only using membership values


