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ABSTRACT 
 

This paper describes a method of object recognition in terrestrial laser scan data of 
complex scenes. By local 3D shape matching between the CAD model mesh of the 
object and the laser scan data of the scene, the existence of the object is recognized 
and its location and orientation in the scene are extracted. Spin-images are used for 
shape matching. In this paper, some techniques for applying spin-image matching to 
the terrestrial laser scan data are proposed. They include robustness improvements 
for the scan noise and the differences in vertex densities by normal averaging and 
uniform point sampling, and efficient calculation by using multiresolution images and 
geometric point filtering. 
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1 INTRODUCTION 

Middle and long range laser scanning technology has been growing in this decade and it has become 
popular in recent years. Currently, three types of scans are available to acquire the scan data of several 
objects and environments. A terrestrial laser scan (TLS) is often used for scanning rooms, inside plant 
facilities, cultural property and remains, buildings and so on. A mobile mapping system (MMS) is used 
for scanning objects around the road of an urban area. An aerial laser scan (ALS) acquires scan data of 
the building and the city from the above. With the progress of scanning technology, useful and novel 
applications of laser scan data are strongly required for the efficient analysis, modeling, and 
management of small scale objects such as industrial products, to large scale environments including 
people’s work space, buildings and cities. The scan data applications are in wide ranging fields, 
including mechanical engineering, civil engineering, architecture, and GIS. However, it is still difficult 
to efficiently extract the meaningful and useful information from the scan data because of its low level 
representation (generally the scan data is a point cloud), enormous quantity (from a few to hundred 
million points in one scan), high level scanning noise (sometimes the data includes unexpected 
creatures), and the lack of data by occlusion or the reflectance property of the object’s surfaces. 
Therefore, enormous time and effort is spent for scan data processing such as filtering, registration, 
classification and object recognition, although the laser scan becomes familiar and scan data have 
been accurate and high density. 
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The purpose of our research is to efficiently find an object and to extract its position and 
orientation in complex environments using terrestrial scan data and geometric models of objects as 
shown in Fig. 1. An input is the terrestrial scan data of a cluttered large physical environment (scene), 
and another input is the geometric model of the object to be recognized. As a result of the object 
recognition, the existence of the object is confirmed, and if it exists, its position and orientation in the 
scene is extracted. Several applications of this kind of object recognition can be considered, for 
example, efficient modeling of environments by embedding the CAD model data into scan data 
according to the result of object recognition, inspection of the work space which checks the existence 
of undesired and desired objects in the environment, and analysis of the environment which checks 
the existence of the objects in the scene and creates a parts list of the environment. In order to realize 
these applications, an efficient object recognition algorithm using scan data and model data is 
necessary.  

In this paper, a method of object recognition using the scan data obtained by terrestrial laser scan 
and object data is described. The input scan and object data are represented by triangular meshes, and 
our method of the object recognition is based on spin-image matching [6,7]. Some techniques for 
applying spin-image matching to the terrestrial laser scan data are proposed in this paper. They 
include robustness improvements for the scan noise and the differences in vertex densities by normal 
smoothing and uniform point sampling, and efficient calculation by using multiresolution images and 
geometric point filtering. The effectiveness of our method was evaluated by experiments using some 
terrestrial scan data.  

The rest of the paper is organized as follows. In section 2, related works of object recognition are 
introduced. The basic algorithm of object recognition using spin images is described in section 3. In 
section 4, the extension method for applying the basic method to terrestrial laser scan data is 
described, and the effectiveness of the method is evaluated by experiments in section 5.  

2 RELATED WORKS 

Many local shape descriptors and shape matching methods have been proposed for object recognition 
and 3D model retrievals [6,7,9,14]. Several good results of the object recognition were shown in the 
previous works, but there is no example of the object recognition from terrestrial laser scan of large 
environments and small object in the environments. In order to realize this type of object recognition, 
in our research, we focused on the spin images proposed by Johnson [6,7], because several results and 
analyses of object recognition using the scan data of cluttered scenes show the high ability and 
applicability of the spin image based object recognition. Our method is the extension of Johnson’s 
method [6], which is designed for applying the spin image based method to the terrestrial laser scan 
data of large environments, especially for the robustness related to the noise and differences in vertex 
density, and efficient calculation. For efficient calculation of object recognition, using principal 
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component analysis of the spin images is proposed [7], but it causes low object recognition. Therefore, 
we propose other approaches based on standard spin image matching. Johnson [6] also discussed the 
problem of the spin images for data with differences in the vertex density. They use mesh modification 
to obtain uniform density of the vertices. In order to solve the same problem, we propose simple point 
sampling based on fast marching, which is easily applicable to large scan data. 

On the other hand, registration techniques can also be used for finding matches between the 
objects in some cases. For example, ICP algorithm [3,11,17] can find the matching position and 
orientation of two objects using iterative minimization of the error function, such as the sum of 
distances between the closest points. However, the results of registration depend on the initial 
position and orientation. Therefore, a certain method for giving the appropriate initial conditions is 
required (One of the methods is the spin image matching). A registration method using four-points 
congruent sets resisters two models efficiently using the ratio of the intersection of diagonals of the 
co-planar four points [1] without the initial conditions. However, the method is not appropriate for 
finding small objects in large scan data, and an adjustment of the parameters is difficult. 

Classification is also useful to find objects in the scan data, and it is important topic for the 
efficient use of laser scan data. Many methods for the classification of the laser scan data have been 
proposed, for example, region growing for finding roads and walls [16], and support vector machines 
for classifying several ground objects [5]. They are effective for finding specific classes of the objects, 
but they are not suitable for recognizing arbitrary objects required by the user. From this point, object 
recognition based on shape matching by inputting object data, i.e., our settings, is appropriate for 
many applications as described in section 1. 

3 SPIN-IMAGES AND OBJECT RECOGNITION 

3.1 Spin images 

Spin image is one of the shape descriptors of polygonal meshes proposed by Andrew Johnson in 
1997[6]. A spin image is created for a vertex (base vertex) by projecting vertices in the mesh to a local 
2D coordinate system defined by the base vertex position and its normal. The pixel value of the image 
is the density of projected vertices. Given the base vertex i, the projection Si of other vertex j is defined 
by Eq. (1). 
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Where, pi and ni are the position and unit normal vector of the vertex i, respectively.  

In spin image generation for base vertex i, first, the projections of other vertices in the mesh are 
calculated. Then, a two dimensional grid is defined on the projected 2D coordinate system so that it 
covers all projected points. Next, the weights of each projected point are calculated for four grid 
points of the cell which includes the projected point. The weight is a normalized distance between the 
projected point and grid point. Finally, the spin image is obtained by converting each grid point to the 
pixel, and sum of the weights of the grid point to the pixel value. The projection is only dependent on 
the normal of the base vertex and relative position between the base vertex and the vertex to be 
projected. Therefore, spin-image does not depend on the position and orientation of the object, that is, 
object recognition using spin images is not affected by them. 

3.2 Object recognition using spin-images 

In this section, the basic algorithm of object recognition using spin-images [6] is briefly described. 
First, the spin-images are created for all vertices in the object data Mo and for randomly selected 
vertices in the scene data Ms. Then the candidates of correspondences (vertex pairs) between the 
object and scene data are extracted by thresholding of a similarity measure. For the thresholding, a 
histogram of the similarity measures is created by comparing a spin image of the model data with all 
spin images of the scene data as shown in Fig. 2. Similarity measure calculation is based on the 
correlation coefficients between two images. Outliers in the histogram, which have extremely large 
similarity measures, are extracted as the candidates of the correspondences (vertex pairs). The outliers 
are founded based on quartiles, as shown in Fig. 2. This process is applied for all spin images in the 
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object data, and the multiple correspondences are obtained. Finally, the candidates of 
correspondences which have a similarity larger than the similarity threshold are extracted as the final 
correspondences.  

After the correspondence extraction, a set of groups of correspondences is created. 
Correspondences (vertex pairs) which have a geometric consistency, that is, the relative locations of 
the corresponding vertices have no inconsistency, are grouped. Each group is created by selecting a 
base correspondence from the extracted correspondences and by adding other correspondences with 
geometric consistency to the group, and therefore, the number of the groups is equal to the number of 
extracted correspondences. For each group which has more than three correspondences, registration 
is applied using correspondences (vertex pairs) in the group. After registration, the degree of 
adaptation is evaluated using the resulting position and orientation. In this evaluation, the following 
measure is used. 

jiji vjid nnpp ),(          (2) 

Where, v is a weight defined by the user. Measure d (i, j) is calculated for each vertex pair (i, j) (iMs, 
jMo) of the correspondences in the group. If the d (i, j) is smaller than the threshold, each vertex is 
marked as valid. If pair (i, j) is valid, the neighboring vertex k of vertex i, which has a smaller d (k, j) is 
founded and d (k, j) is compared with the threshold. The same operation is done by changing the 
evaluating vertices to its neighbors in each mesh. If the number of valid vertices are larger than the 
threshold, the object exists in the scene, and the modified ICP algorithm is applied to the object and 
model data for determining the final object’s orientation and location.  
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Fig. 2: Correspondences extraction using spin images. 
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Fig. 3: Our algorithm of object recognition using spin images. 
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4 OBJECT RECOGNITION FROM TERRESTRIAL LASER SCAN DATA 

4.1 Terrestrial laser scan data and extension of the algorithm 

Our algorithm of object recognition is shown in Fig. 3. First, normal averaging and uniform point 
sampling is applied to the input data for improving the robustness of the scanning noise and 
differences in the vertex densities. Then, spin images are generated and object recognition is done 
using the method described in the previous section. In the object recognition process, the hierarchical 
image comparison using multiresolution images and point filtering is adopted for shortening 
calculation time.  

The problems of the application of spin image based method to object recognition using the 
terrestrial scan data are 1) uncertainty of the normal directions, 2) different vertex density, and 3) 
high-computational cost in image comparison. 

The scan data generally has scanning noise, which affects the evaluations of several geometric 
properties, such as normals and curvatures. The influence of the scanning noise on normal has to be 
reduced, because spin images are greatly depending on the normal directions. To solve this problem, 
normal averaging is used in our algorithm. 

Spin images depends on the density of the vertices. Generally, terrestrial scan data have a 
different vertex density depending on the distance from the scanner. It is high near the scanner and 
low at distant locations from the scanner, and is in inverse proportion to the squared distance from 
the scanner. Therefore, spin images at a distant position have low pixel values. In our algorithm, 
uniform point sampling is used for averaging the vertex density of the scan data and object data. 

Terrestrial scan data generally includes several millions or hundreds of millions of points. The 
computational time of object recognition using spin images depends on the number of vertices in the 
scan data, therefore it should be reduced. In our implementation, comparing spin images using 
correlation coefficients was the most time-consuming process (about 90% of all process). It depends on 
the number of vertices which have a spin image in the model and scan data, and the number of the 
pixels of the spin images. In order to reduce the computational time, in our algorithm, multiresolution 
images based on wavelet transform are used. In this method, low resolution images are used to extract 
candidates of correspondences efficiently. Point filtering is also proposed to shorten the 
computational time. In this method, the regions where the object does not exist are founded and the 
spin image comparison is not applied to the points in the regions. In the following sections, their 
details are described. 

4.2 Normal averaging 

In order to reduce the influence of scanning noise, normal averaging is applied. Since spin images are 
created depending on the vertex normals, the images are greatly influenced by scanning noise. Robust 
normal estimation is one of the solutions for maintaining the robustness for the noise, but the density 
of the points differ from the distance between the objects and scanners, and therefore, their 
techniques often do not work well. Geometry smoothing [10,15] may be used to obtain better normals. 
However, the purpose of the modification of the normals is to bring the normal directions closer at the 
same position on the object in the object data and scan data. In spin image based recognition, it is not 
important to calculate exact normals, because it is enough to create similar spin images at the same 
position of the object. Therefore, in our algorithm, the normal averaging is applied both to the scan 
data and object model data. A normal of a vertex is replaced with the average normal of its 
neighboring vertices in one step, ||||/ ** jijjiji nnn   , where ni is a normal of vertex i, and i* is a set 

of neighboring vertices of i. This is iteratively applied to the given meshes. 

4.3 Uniform point sampling 

Differences in the vertex densities cause low object recognition rate, because the spin image greatly 
depends on vertex density. In the laser scan data, the point densities differ depending on the distance 
between the scanned object and laser scanner as described in section 4.1. Fig. 7(a) shows spin images 
created at similar positions of the same object at different distances. The images differ greatly and it 
causes failure of object recognition. In order to solve this problem, some techniques can be used, for 
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example, mesh resolution control [6]. Surface fitting based sampling techniques [2] are also useful for 
uniform point sampling. In our research, simple uniform point sampling of the triangular mesh is 
proposed. The advantage of this method is its low computational cost and the applicability of massive 
complex meshes.  

In our method, first, the fast marching method [12] is applied to each connected meshes in order 
to calculate geodesic distances. Then the equidistant lines are calculated in each of the connected 
meshes. Finally, the points are uniformly sampled on the equidistant lines. 

The fast marching method is one of the methods for calculating geodesic distances of surfaces by 
solving an Eikonal equation, which represents a propagation of wave [12]. The wave is propagated 
from a vertex to its neighboring vertices iteratively. As a result, geodesic distances from the vertex are 
obtained as arrival times of the wave at each vertex as shown in Fig. 4(a). The arrival time of the wave 
at a vertex is calculated using the arrival times of its neighboring vertices based on a gradient. We 
used a method for calculating the time of a vertex from the other vertices proposed by Kimmel [8].  

In fast marching method, first, tags are assigned to each vertex. A vertex (base vertex) is tagged in 
the initial conditions as alive. The close tag is assigned to its neighboring vertices. The other vertices 
are tagged as far. For each close vertex, time t is calculated. The following process is repeated until all 
vertices become alive. 1) finding a close vertex which has smallest t, and changing its tag from close to 
alive. 2) changing the tag of far vertex to close, if its neighboring triangle has two alive vertices. 3) 
recalculating the time t of the close vertices. 

Then, the equidistant lines from the base vertex are created at specific intervals. According to the 
interval d specified by the user, new points n whose distance from base vertex are nd (n is integer 
number) are newly generated as pn =  pi + (1   ) pj, where  = (nd  tj ) / (ti  tj ), on the edges (i, j) whose 
one end point i has a larger time ti than nd and the other point j has a smaller time tj than nd (tj  nd  ti ). 
Then by connecting points having the same distances, equidistant lines at interval d are obtained as 
shown in Fig. 4(b). Finally, by sampling the equidistant lines at interval d, uniform points are obtained. 

For spin image generation, the normal at each point is required. Since all sampled points are on 
the triangles, the normal of a sampled point can be calculated by the area coordinate interpolation of 
the averaged vertex normals of the triangle in which the sampled point exists. In object recognition, 
uniform point sampling is applied to both the scan and model data using same interval d, and spin 
images are created for the sampled points with normal. 

4.4 Correspondence extraction using multi-resolution images 

Computational time of object recognition depends on the resolution (number of pixels) of the spin 
images, because similarities of spin images are calculated using the correlation coefficients of two 
images. Therefore, reducing the resolution of the images shortens the computational time of the object 
recognition. In our method, wavelet transform [13] is applied to the spin images for obtaining lower 
resolution images.  

In our approach, first, candidates of correspondences are obtained using low-resolution spin 
images. Then, the final correspondences are extracted from the candidates using high-resolution spin 
images. In our implementation, Haar wavelet [13] is used. After wavelet transform, the multi-resolution 
representation (MRR) of the image is obtained, which consists of three high frequency components HL

j
, 

LH
j
, HH

j
 at each decomposition level j and the lowest resolution component LL. From the MMR, a high-

Base
point

Front of 
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Fig. 4: Uniform re-sampling of triangular mesh. 
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resolution image is quickly reconstructed by inverse wavelet transform. Therefore, in our system, all 
spin images are stored by MRR.  

4.5 Point filtering 

Point filtering is used to reduce the number of spin image comparisons. In this process, the regions in 
which the object does not exist are founded, and the spin image comparison is not applied to the 
points in the regions. In our method, we focused on the area of the planar region. First, the largest area 
Sm of the planar region of the object data and each area Si of the planar regions i in the scene data are 
calculated. The object does not exist in regions i which satisfy the condition Sm<Si, therefore the spin 
images of the points in the regions are not compared in the correspondence extraction.  

The algorithm of planar region extraction is as follows: Step1: extracting connected mesh in the 
scene data. Step2: for each connected mesh, making clusters of vertices based on k-means clustering 
of normal vectors (details are described next paragraph). Step3: extracting connected triangles 
consisting of vertices in same cluster as the planar region. 

In step2, k-means clustering of vertices are used to find a set of vertices which has similar 
normals. This process is done as follows: Step2.1: clusters and seed unit vectors of each cluster are 
defined (80 clusters in our implementation). Step2.2: each vertex i is added to the cluster whose seed 
vector ns is closest to its normal. Step2.3: If the cluster does not change from the cluster of the 
previous iteration, the clustering process finishes. Otherwise, new seed vectors are calculated as the 
average vector of the normal vectors of the vertices in the cluster. Step2.4: Seed vectors and clusters 
are merged, if the angle between two seed vectors less than the angle threshold t (1 degree in our 
implementation). Step2.5: Go back to step2.2. 

5 RESULTS 

5.1 Scanner, data, and examples of object recognition 

A scanner, delta sphere 3000 [4], was used in our experiments. Fig.5 shows the scan data and object 
data used in our experiments. We apply our method to three scan data and object data. The 
information of the scan and model data are summarized in Table 1. Object recognition using our 
algorithm is done for each scan data and the results are also shown in Fig. 5 (right). In case 1, two 

case1 case2 case3

Object data

Name corrugated carton jig Force feedback device
size(wxhxd)]mm] 500x130x150 120x40x24 200x170x180 (body)
#v,#t (original) 4.7k, 9.4k 1.5k, 3.0k 4.1k, 7.7k
#points after sampling 11.8k 4.2k 2.3k

Scan data

Name Four corrugated cartons Machine tool table Laboratory office
size(wxdxh)]mm] 3400x265x1544 351x227x469 11267x3087x10634
#v,#t (original) 141.5k, 277.7k 81.2k, 148.9k 3.7M, 7.1M
#points after sampling 189.1k 60.0k 4.8M
#objects 4 1 1

Sampling interval [mm] 5 2 4
#recognized object 2 1 1
Recognition time [sec]* 175 559 780

* CPU: Core 2Quad 2.4GHz, RAM:8GB, OS: WinXP64bit  

Tab.1 Scan data and object data and object recognition 
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objects near the scanner were recognized. In other cases, each object was correctly found in the scan 
data. Results of registration are shown in the right of Fig.5. Processing times are shown in Table 1.  

5.2 Effects of normal averaging and uniform point sampling 

First, spin images are visually compared before and after normal averaging and uniform point 
sampling. Fig. 6 shows the spin images at a similar position on the object in the object and scene data. 
By applying normal averaging, spin images become similar as shown in Fig. 6 (right). Fig. 7 shows the 
result of the uniform sampling of the laser scan data and generated spin images. In order to 
investigate the effects of uniform point sampling, we scanned the scene including the same objects 
(force feedback devices) at 2m to 7m at 1m intervals, and we applied our method to the scan data. 
Using uniform point sampling, similar spin images can be obtained from objects at different distances 
as shown in Fig. 7. Table 2 shows the number of extracted correspondences. By applying the point 
sampling, the number of correspondences increased for each object. 

In the object recognition without normal averaging and point sampling, the objects at 2m, 3m, and 
4m were recognized. After point sampling and normal averaging, the objects at 5m and 6m were able 
to be recognized (but the object at 7m was not recognized). This shows that the recognition ability 
increases by normal averaging and uniform point sampling.  

Result of recognition

Object data (jig) Scan data (machine tool)

Object data
(haptic device)

Scan data
(laboratory 
office) Result of recognition

(a) Case1

(b) Case2

(c) Case3 

Result of recognition

Scan data 
(four corrugated carton)

Object data 
(corrugated carton)

 
Fig.5 Results of object recognition. 
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5.3 Effects of multi-resolution images and point filtering 

The effects of the use of multi-resolution images and point filtering were individually investigated. 
First, the effect of the use of multi-resolution images was evaluated for case 3 in Fig. 5. The candidates 
of correspondences (top 20% of resulting correspondences) were extracted using low-resolution 
images (decomposition level is two). After that, final correspondences extraction was done using 
candidates of correspondences and their high-resolution (original) spin images. The recognition time 
was reduced to 18.7% of the original method using multi-resolution images. In our experiments, final 
correspondences differed from the one without the use of multi-resolution images, but the recognition 
results were same.  

Planar regions extracted by our method are shown in Fig. 8(a,b), and filtered points are shown in 
Fig. 8(c). Using point filtering, the numbers of spin-image comparisons reduce to 54%. The rate will 
depend on the complexity scene and object. As a result, object recognition time is shortened to 63%. 
The results of recognition were not changed in our experiments. However, the point filtering has 
possibility to change the results of object recognition. 

Averaging
・ #Iterations: 60
・ Processing time： 30.6 sec.

Object data 
(#v：7K, #t：13K)

Scan data
(#v：2.0M, #t：3.8M)

（PC： CPU:  Xeon E5345 
2.33GHz, RAM: 16.0GB）

#correspondences: 
• 50 (before averaging)
• 330 (after averaging)

Spin images 
(left: before averaging, right: after averaging)

 

Fig. 6: Normal averaging and spin images. 

・ Interval: 3.5mm  
・ Processing time：

1.1 sec.
(CPU:  Xeon 
E5345 2.33GHz,  
RAM: 16.0GB)

(a) Scan data (#v: 50k, #t: 97k) and spin images (b) Sampled points (#p: 84k) and spin images

Same objects at 
different distances 
(2m, 3m, 4m) from 
the lasers canner

Scan data Spin images Spin images

Size:200x170x180[mm]
(body without arm)

Sampled scan data

 

Fig. 7: Uniform point sampling and spin images. 

Distance from scanner [m] 2 3 4 5 6 7

#correspondences (original) 71 51 88 25 0 1

#correspondences after point sampling 385 245 215 260 142 68
 

Tab. 2: Number of extracted correspondences before and after uniform point sampling. 
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6 CONCLUSION 

This paper describes a method of object recognition using terrestrial laser scan data and object data. 
First, spin images and the object recognition method using spin images are described. Then, extension 
methods for applying spin image based object recognition to terrestrial laser scan data are proposed. 
They include normal averaging for improving robustness to the scan noise, uniform point sampling 
based on the fast marching method for improving robustness to the difference in the vertex densities, 
the use of multi-resolution images for efficiently finding the correspondences, and point filtering 
based on comparing the area of planar regions for reducing the number of spin image comparisons. 
Some experiments showed that our method can improve the recognition rate of objects and can 
shorten the calculation time of object recognition. Future works include object recognition from point 
clouds, and the application of object recognition to the modeling of environments by embedding the 
CAD model data into scan data.  
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