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ABSTRACT: 

 

Recently, changes in plant equipment have been becoming more frequent because of the short lifetime of the products, and 

constructing 3D shape models of existing plants (as-built models) from large-scale laser scanned data is expected to make their 

rebuilding processes more efficient. However, the laser scanned data of the existing plant has massive points, captures tangled 

objects and includes a large amount of noises, so that the manual reconstruction of a 3D model is very time-consuming and costs a 

lot. Piping systems especially, account for the greatest proportion of plant equipment. Therefore, the purpose of this research was 

to propose an algorithm which can automatically recognize a piping system from terrestrial laser scan data of the plant equipment. 

The straight portion of pipes, connecting parts and connection relationship of the piping system can be recognized in this algorithm. 

Eigenvalue analysis of the point clouds and of the normal vectors allows for the recognition. Using only point clouds, the 

recognition algorithm can be applied to registered point clouds and can be performed in a fully automatic way. The preliminary 

results of the recognition for large-scale scanned data from an oil rig plant have shown the effectiveness of the algorithm.    

 

 

1. INTRODUCTION 

Recently, in chemical, material and food plants, because of the 

short life cycle of the products in the market, changes in the 

plants’ equipment have been becoming more frequent. 

However, the former changes are not necessarily recorded in 

the plant drawings in many cases in Japan. For this reason, 

unintended collisions between the existing equipment and the 

designed ones often occur in the construction stage, and this 

causes delays of the work and additional costs. 

On the other hand, with improvement of terrestrial laser 

scanner performance, massive point clouds of real objects have 

been acquired very easily and quickly. Also, there is a strong 

possibility that 3D models of production facilities and plant 

equipment could be reconstructed from these point clouds. 

Once the models are built, the unintended collisions between 

the existing equipment and the designed ones can be efficiently 

checked and avoided before the construction stage.  

Therefore, 3D modelling of existing plants from scanned point 

clouds is considered to be an imperative process in the recent 

plant rebuilding process. However, the laser scanned data of 

the existing plant has a huge number of points, captures very 

tangled sets of objects and includes a large amount of noises. 

Therefore, recognizing each individual object from these 

tangled, enormous and noisy point clouds and building 3D 

models of them becomes nearly impossible or very time 

consuming when doing it in a manual way. Thus, automating 

recognition and construction of the 3D models from the point 

clouds needs to be strongly promoted in plant engineering. 

Chemical, material, and food plants consist of many types of 

objects. Among them, the piping system especially accounts for 

the greatest proportion. As shown in Fig.1 and 2, a piping 

system consists of various piping elements and connection 

relationships; straight pipes, connecting parts, such as T-

junctions and elbows, indicators, valves, etc. Also, the 

connection relationship defines the logical connectivity 

between these piping elements.  

Several research studies have been proposed for algorithms of 

recognizing a piping system from laser scanned point clouds. 

However, these algorithms could not recognize pipes in a fully 

automatic way, or could not be applied to a registered point 

cloud, or could not recognize pipe parameters such as radii or 

length. 

Therefore, the purpose of our research was to propose a new 

algorithm that can automatically recognize piping elements and 

their connection relationships from a registered laser scanned 

point of a plant. In addition, the algorithm can recognize pipe 
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Fig.2  UML class diagram of a piping system 

 



 

 

radii and their positions, and the orientations of them as pipe 

parameters with high accuracy.  

The algorithm was tested for a large-scale laser scanned point 

cloud of a real plant, and the accuracy of the radii and their 

connection relationships were verified. 

 

2. RELATED WORKS 

So far, several research studies have been done for developing 

algorithms to recognize objects from terrestrial laser scanned 

point clouds. Binert proposed an algorithm which can 

recognize tree trunks from a point cloud measured from forests 

(Binert et.al 2006). Luo proposed one which recognizes pillars 

from a point cloud of building indoor environments (Luo et.al 

2008). In both of these, objects are recognized by fitting circles 

to the points projected onto a horizontal plane. However their 

algorithms can only recognize column-like objects whose 

inclination was limited to nearly only the vertical one.  

Several research studies have also been done to recognize 

objects from laser scanned data of plant equipment. Masuda 

proposed an algorithm which can recognize planes and 

cylinders from the data of plants (Masuda et.al 2009). However, 

a region to be recognized has to be selected manually in 

advance. Matsunuma also proposed an algorithm similar to 

Masuda’s (Matsunuma et.al 2010), but it requires the 

combination of measured point clouds, range imageries and 

brightness imageries.  Rabbani also proposed an algorithm 

which reconstructs a 3D plant model from the combination of 

point cloud data and a photographic image which are taken 

from a single measuring location (Rabbani et.al 2004). 

However, the recognition algorithms can only be applied to the 

combination of the point cloud and the image generated by a 

single scan. Piping systems usually occupy a large-space in 

factories and multiple scans must be taken and each be 

registered to collect the point cloud which can cover the 

existing space of all the pipes. Unfortunately, it is hard for the 

above algorithms to be applied to a huge point cloud which is 

created as a result of the registration of the points generated by 

multiple scans. Andrew proposed an algorithm which can 

semi-automatically build a 3D model by matching a point cloud 

to a CAD model using spin images (Andrew et.al 1997). 

However, the matching is inefficient because it uses an 
exhaustive search, and an experimental verification was not 

done. Bucksch proposed a skeletonization algorithm which 

classifies the scanned point cloud into several groups, each of 

which corresponds to a single skeleton. It can be used to 

extract the feature structure and to recognize the connection 

relationship in a piping system (Bucksch et.al 2010). However, 

it is hard for this algorithm to recognize straight portions of the 

pipe from the point cloud.  
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Fig.3  Recognition Algorithm Overview 
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Fig.4  The detailed process of recognizing points on pipes and model fitting to the pipes 

 



 

 

3. ALGORITHM OVERVIEW 

As shown in Fig.3, our algorithm consists of two steps. 

In the first step (A1), points on straight pipes, here after 

referred to “pipe points,” are extracted, and their radii and the 

positions of the pipes are recognized as pipe parameters from a 

point cloud. Also, axis segments of the pipes are calculated 

from the extracted points and from the parameters. 

Then, in the second step (A2), the connection relationships 

among the extracted straight pipes are recognized using the 

positions of the axis segments.  

The point clouds from the laser scan in a plant generally 

include, not only the points on the piping system, but also 

those on many other classes of objects, such as building 

columns, supporting brackets, containers, etc. However, in this 

research, in order to simplify the recognition, it is assumed that 

the points measured from objects other than the piping system 

are roughly removed by manual pre-processing and that the 

input point cloud to the recognition algorithm only includes the 

points of the piping system. 

The detailed processes of steps (A1) and (A2) are shown in 

sections 4 and 5.  

 

4. RECOGNIZING POINTS ON PIPES AND MODEL 

FITTING TO PIPES 

In this section, the detailed process of the recognizing points on 

pipes and fitting models to pipes are described. The flow of the 

process is shown in Fig.4. 

 

4.1 Estimating normal vectors (A11) 

A scanned point cloud consists of a set of vertices. In order to 

estimate the normal vector at a vertex i , first, the covariance 

matrix 
iS  is calculated by equation (1) (Qian et.al 2008), (Leo 

et.al 2007) . 
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where  ),( 1riN  a set of neighbouring vertices contained in 

the sphere of radius 
1r  centred at i . 

 iv  a position vector of i . 

 

Then, the eigenvalues )0(,, 321321   and 

corresponding eigenvectors 321 ,, eee  are obtained by 

eigenvalue analysis of iS . If we set 1r  to smaller than the 

radius of pipe R , the vector 3e  will approximate the normal 

at i . Thus, 3e  is determined to be the initial normal vector in  

at vertex i . Then, another set of points ),( 2riN  are projected to 

a plane vu  whose normal is in . Also a quadratic 

polynomial surface ),( vuhw   of equation (2) is fit to ),( 2riN . 

Finally, the normal vector in  at vertex i  is calculated as a 

normal of ),( vuh  at vertex i  in the original coordinate frame 

zyx   (Mizoguchi et.al 2007). 
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where  ),,( wvu a local coordinate frame whose origin is at 

i , and w  axis parallel to in . 

 

4.2 Extracting points on pipes (A12) 

First, a normal tensor 
iT  at vertex i  is calculated by equation 

(3) from a set of points ),( 3riN  (Qian et.al 2008), (Leo et.al 

2007). 
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Then, the eigenvalues )0ˆˆˆ(ˆ,ˆ,ˆ
321321   and 

corresponding eigenvectors 
321 ,, mmm  are obtained by 

eigenvalue analysis of 
iT . These eigenvalues and eigenvectors 

show spatial distributions of the normal gauss image as shown 

in Fig 5. For example, at a vertex i  on a straight portion of 

pipe, the normal vectors in ),( 3riN  exist almost on one plane. 

Then 3̂  becomes much smaller than 1̂  and 2̂ . While at a 

vertex on an elbow or a T,Y junction, the normal vectors are 

distributed three-dimensionally. Then, 3̂  becomes larger than 

that of the former case. Thus, limiting 3̂  enables whole 

scanned points to be classified into "pipe points” and "non-pipe 

points”. The threshold value is determined by the discriminant 

analysis method [William et.al 1980]. 

 

4.3 Grouping “pipe points” (A13) 

After finding the pipe points, the points on one straight portion 

of a pipe are integrated into a single region by applying the 

region growing method. First, a seed point s  of a region is 

chosen from “pipe points” at random. Then, other pipe points 

contained in a set of neighbouring points ),( 4rsN  centred at s  

are added to the region. Each of these added points are then 

chosen as a new seed point, and other “pipe points” adjacent to 

each seed point are added to the region. 

The above steps are repeated until “pipe points” exists in 

neighbourhoods of the seed points. 
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Fig.6 Cylinder fitting using region-growing 

 



 

 

4.4 Extracting initial pipe parameters (A14) 

After grouping the “pipe points,” the axes of the pipes and 

their radii are estimated. 

First, a normal gauss image is created from all “pipe points” in 

a region. Then, as shown Fig.5 (a), a plane is fitted to the 

gauss image using RANSAC, and an initial axis vector 
initp  is 

estimated as the normal vector of the plane. In the RANSAC, 

the number of sampling is 500 and the outlier threshold is 0.01 

in this paper. Then, all “pipe points” in the region are 

projected to the plane, and a circle is fitted to the projected 

points by the least-square method. As a result, the centre point 

and the radius of the fitted circle respectively become an initial 

point on the axis 
initv  of the pipe and an initial radius 

initr  of 

the pipe. 

Then, a cylinder is precisely fitted to the points of the region 

using the non-linear least square method (Shakarji et.al 1998). 

In the method, if we denote the parameters of the cylinder 

),,,,,,( rcbazyx

 

where ),,( cba  is components of the axis 

vector v , ),,( zyx  is components of a position vector p  of a 

point on the axis, and r

 

is the radius of the cylinder, the 

objective function of the fitting is shown in expressions (4), (5) 

and (6).  
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where  ),,( iii zyx  a position vector of the “pipe points”. 

 N

 

number of the “pipe points”. 

 

Then points in the region are projected to the cylinder axis, and 

two end points of the projected points are determined as edge 

points ee , , as shown in Fig.7. The segment connecting e  

with e

 

is used for recognizing pipe connecting relationships, 

as described in Section 5.  

 

4.5 Correcting the pipe parameters (A15) 

In the output of A12, “non-pipe points” still includes a few 

numbers of points on the straight portion of pipes due to the 

limitation of the discriminant analysis. For the improvement of 

fitting and recognition accuracy of pipes, the miss-classified 

points included in the “non-pipe points” are extracted from the 

set and are added to the “pipe point”, and cylinders are re-fit to 

the “pipe points”. In this step, as shown in Fig.6, a seed point 

s  which exists nearest to a cylinder originally fit to a pipe is 

chosen from “non-pipe points”. Then the “non-pipe points” 

within the distance 1Th  from the cylinder are only selected 

from the points ),( 4rsN . The selected points are then added to 

the pipe region and a cylinder is fitted once again. Then these 

selected points become new seed points. 

The above steps are repeated until a “non-pipe” point which 

lies within the distance 1Th  from the fitted cylinder exists in 

the neighbourhood of the new seed points. 

 

5. RECOGNIZING CONNECTION RELATIONSHIP 

In order to recognize the straight portions of a pipe occluded by 

other pipes and to identify junctions among the pipes, the 

connection relationship between pipe regions is recognized by 

checking the relative positions and orientations of the axis 

segments created in the Step A14. 

As shown in Fig.7, an axis segment 
iS  of a pipe has a centre 

point 
ip , two edge points 

ii ee , , outward unit axis vectors 

ii uu ,  and a radius of the fitted cylinder 
iR . Based on the 

segments, occluded portions of pipes are interpolated, and T 

and Y junctions and elbows are identified progressively.   

 

5.1 Recognition of occluded pipe portions 

In order to correctly interpolate an occluded pipe portion 

between two pipe segments, the following checking process is 

done. 

First, pairs of nearly collinear axis segments 
iS  and jS  which 

satisfy equations (7) and (8) are selected. 

 

 innerji uu     (7) 

 inneriji pv     (8) 

where  ijp a unit direction vector of a line connecting two 

segment centre points 
ip  and jp  as shown in Fig.8. 

  

The threshold 
inner  was set to be 0.98 in our experiments. 

Next, the possibility of the collision of a line segment jiee  

with another pipe region is checked. As shown in Fig.9-(a), if 

the other pipe interferes with segment jiee , the minimum 

distance l  between a pipe point on the other pipe and segment 

jiee  becomes very small. Thus, if l  is less than the 

threshold
l , the other pipe could interfere with the two pipe 

segments 
iS  and jS , which should not be interpolated as one 

pipe. 

On the contrary, as shown in Fig.9-(b), if l  is greater than the 

threshold 
l , the other pipe does not interfere with jiee  and 

the space between ie  and je  may be interpolated as a one 

pipe. Usually, multiple pairs of  
iS  and jS  satisfy this 

condition. Therefore, the segment pair whose endpoints ji ee ,
 

take the minimum distance is finally selected as an appropriate 

one to be interpolated, and a new pipe segment 
newS  is 

inserted between the endpoints ie  and je  as shown in Fig.8-

(c). A radius of the segment 
newS  is inherited from 

iS  and jS  

as an average of the radii iR  and jR  respectively. 

 

5.2 Recognition of T,Y junction parts 

After the interpolation of occluded straight pipe portions, T and 

Y junctions which connect multiple pipes are identified. 

As shown in Fig.10, first, a pair of segments which satisfy the 

following equations (9) and (10) are selected. 

 

 skewij qq     (9) 

 iiii eqee      (10) 

where  skew the threshold for the skew distance between  

iL  and jL  

 

iq  and jq  are position vectors of the intersection points of the 

common perpendicular line of two half lines iL  and jL  which 

respectively pass through end points ie  and je  and are 

collinear to axis segments iS  and jS . skew  was set to 13.0 r  in 

our experiment, which gave good recognition results. Moreover, 

if the line segment jie q  does not interfere the other pipe and 

gives the minimum distance ji qe   among the other jq s, 



 

 

then a new segment 
newS  is inserted so as to connect 

ie  and 

jq . The radius of the segment 
newS  is determined to be 

identical to the radius 
iR  of the segment 

iS . 

 

5.3 Recognition of elbow parts 

After the interpolation of T and Y junctions, elbows which 

connect two pipes are identified. 

As shown in Fig.11, first, a pair of segments 
iS  and jS  which 

satisfy equation (10) are selected. Moreover, if the line 

segments iie q  and ije q  do not interfere with the other pipe 

and give the minimum distance ji ee  , then two new 

segments inewS ,  and jnewS ,  are inserted so as to connect 
ie  and 

iq , and to je  and 
iq . A radius of segments  in e wS ,  and jnewS ,  

are determined as radii 
iR  and jR . 

 

5.4 Classification of connecting elements 

After inserting the new segments between the existing pipe 

segments according to 5.1-5.3, each edge point ie  is finally 

classified into one of the five types using the following criteria: 

 

1) Elbow 

At the point, two segments connect, and the axis direction 

vectors 
iv  and jv  of the segments 

iS  and jS satisfy the 

condition innerji  vv .  
2) Reducer 

At point ie , two segments connect, 
iv  and jv  satisfy the 

condition innerji  vv , and the difference in radii 

ji RR   satisfies rji RR  , where 
r  is set to 0.5 

times of the greater radius of 
iR  or jR . 

3) T-junction 

At point ie , three segments connect, and the inner products 

among  kji vvv ,  satisfy equation (11), where 1.0t . 

 

   tkjkiji  vvvvvv ,,min   (11) 

 

4) Y-junction 

At point ie , three segments connect, and the inner products 

among  kji vvv ,  do not satisfy equation (11). 

5) Occluded portion 

At point ie , two segments connect, the iv  and jv  satisfy 

the condition innerji  vv , and the difference in radii 

ji RR   satisfies rji RR  , where ),max(5.0 jir RR .  

 

6. RESULTS 

As a preliminary experiment, point clouds were scanned from a 

Y junction (#points: 40,634) and an elbow (#points: 27,668) of 

PVC pipe using a 3D non-contact digitizer (KONICA 

MINOLTA VIVID 910). The thresholds were 1r 10.0, 

2r 15.0, 3r 50.0, 4r 5.0, 1Th 1.0, and krewTh 3.0mm. 

The total recognition process took 124.2sec for the Y-junction 

and 25.5 for the elbow. 

The recognition results of pipe point regions are shown in 

Fig.12, and those of the cylinder fitting and the connection 

relationship in Fig.13. The recognitions and the classifications 

were successfully done. The dimensional errors in outside radii 

between the recognized parameters and the real ones are 

shown in Table.1. The maximum error was less than 0.60mm.  

Given the radius interval of the PVC pipe product series, 

recognition accuracy of the pipe parameters in our proposed 

algorithm is appropriate. 

As an experiment for more realistic recognition, a set of 

complex point clouds were scanned from a real oil rig by a 

laser scanner (Cyra Technologies CYRAX2500), and they were 

registered to be one huge point cloud, as shown in Fig.14. It 

had about 1,720,000 points. The total recognition process took 

6311.8sec in PC (Core-i7) which includes normal vector 

calculation 2749.8sec and that of the normal tensor 2295.8sec. 

The thresholds were 1r 30.0, 2r 50.0, 3r 150.0, 4r 10.0, 

1Th 1.0, and krewTh 10.0mm.  

The final recognition results of cylinder fitting to the pipe 

portions and of the connection relationships are shown in 

Fig.15 and 16. The recognition accuracy of the connecting pars 

is also shown in Table.2. In the result of junction elements 

recognition, some elbows were mis-recognized as Y-junctions. 
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Fig.7 An axis segment of pipe 
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Fig.8 Interpolation of occluded portions 
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Fig.9 Collision detection between two pipe segments 
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Fig.10 Recognition of T,Y junction parts 
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Fig.11 Recognition of elbow parts 
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Fig.12 Recognition results of “pipe” points recognition 
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Fig.13  Results of connecting relationship 

 
Region Radius of

Real product

1 23.98

Recognized

radius

2

3
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24.57
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Error

+0.47

-0.10

Error

1

2

Region Radius of

Real product

16.34

Recognized
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16.68

16.1

16.1

+0.24

+0.58  
(a)     T junction                       (b) elbow 

Table.1 Results of radius of pipe recognition 
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Fig.14 Scanned data of an oil rig  

 

 
Fig.15  Results of “pipe” points recognition 

 

 
Fig.16  Results of connecting relationship  
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Table.2  Results of connecting parts recognition 

The reason for this mis-classification was that the length of the 

recognized cylinder was over estimated and they were mis-

identified as Y junctions. Moreover, in the results, some 

elbows and T junctions were recognized as not being 

connection parts. The reason was that the occluded pipe 

portions were too long to be interpolated, and they were 

recognized as being separate.  

 

7. CONCLUSIONS 

A new algorithm was proposed that can automatically 

recognize a piping system from scanned point clouds. The 

points on pipes could be recognized by the normal tensor and 

the discriminant analysis method, and the radii and positions of 

pipe segments could be recognized by cylinder fitting using the 

non-linear least square method and region-growing. The 

connecting relationship between pipes could be classified 

based on the relative positions and orientations of segment 

axes of the fitted cylinders. The recognition results and the 

dimensional accuracy of the recognition were verified by small-

scale and large-scale examples, and the results show the 

potential effectiveness of the proposed algorithm.  

Of course, the algorithm still lacks a function which can 

discriminate point clouds included in the piping system from 

the other points in scanned data. The pillar recognition 

algorithm proposed by Luo might be of some help to the 

discrimination function (Luo et.al 2008). This remains to be 

part of our future work.  
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