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Abstract: Recently, meshes of engineering objects have 
been easily acquired by 3D laser or high energy industrial X-
ray CT scanning systems, which are then widely used in 
product development. When utilizing the scanned meshes in 
object inspection, re-design, and simulation, it is very 
important to use them to reconstruct CAD models. Engineering 
objects often exhibit translational and rotational periodicities 
for their functionality. Therefore, it is essential to recognize 
such periodicities when reconstructing 3D CAD models that 
contain compact data representations. However, previous 
methods for reconstructing CAD models have not focused on 
recognizing such periodicities. In this paper, we propose a new 
method for recognizing translational and rotational 
periodicities based on the indexed-ICP algorithm. Our method 
robustly extracts a set of periodically displaced regions and the 
parameters defining the periodicity, such as translational basis 
vectors or a rotational axis and a basis angle, from scanned 
meshes. We demonstrate the effectiveness of this method from 
experiments using 3D laser and X-ray CT scanned meshes of 
engineering objects. 

Key words: reverse engineering, CAD/CAM, periodicity, 
ICP 

1- Introduction 

3D laser scanning systems are widely used in product 
development to acquire geometric point cloud data from real-
world engineering objects. More recently, high energy 
industrial X-ray CT scanning systems, which have been 
developed rapidly, have enabled users to quickly and non-
destructively obtain 3D images of complex objects containing 
internal structures [S1]. The acquired data can be easily 
converted into a 3D mesh using well-known surface 
reconstruction algorithms, such as the marching cube [LH1]. 
Reconstructing CAD models from scanned meshes is very 
important to the inspection, re-design, and simulation of 
engineering objects. 

The surface of engineering object often exhibit translational 
and rotational periodicities for their functionality. For 
example, as shown in Figure 1, in order to define 3D CAD 
models with translational and rotational periodicities, a 3D 
geometry of the base region of the periodicity, parameters 
defining periodicity, and translational / rotational “pattern” 
commands must be fed into the CAD system. A CAD model 
of a single base region can be reconstructed from its scanned 
mesh model using several well-known reverse engineering 
algorithms [CG1, KZ1]. However, previous reverse 
engineering methods for reconstructing CAD models [VF1, 
KF1, TO1, CG1, KZ1] have not focused on identifying the 
periodicities. Therefore, defining such CAD models 
automatically will require extracting a set of periodically 
displaced regions with the same geometries, as well as the 
parameters defining the periodicity, such as translational 
basis vectors or a rotational axis and a basis angle.  

1.1 – Related works 

Many algorithms have been proposed for recognizing 
periodicities in 2D images. Lin et al. [LW1] proposed an 
algorithm that recognizes a translational periodicity in a 2D 
texture based on the generalized Hough transform. Liu et al. 
[LC1] proposed an algorithm that recognizes a variety of 
periodicities, including translations, rotations, and reflections, 
based on the crystallographic theory. Müller et al. [MZ1] 
proposed an algorithm for extracting a translational 
periodicity from a 2D façade image in order to create a 3D 
model of a building by subdividing the image and evaluating 
the mutual information between the different subdivided 
images. However, such algorithms cannot be easily extended 
to recognize periodicities in 3D scanned meshes.  
Periodicity recognitions have strong relationships with 
symmetry detections in the sense that they both find pairs of 
local shapes that can be matched to one another under certain 
transformations. Podolak et al. [PS1] proposed an algorithm 
to detect all possible planar reflective symmetries from a 3D 
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mesh based on the voting scheme. Mitra et al. [MG1] proposed 
an algorithm to detect partial approximate symmetries, 
including translation, rotation, reflection, and uniform scaling, 
from a 3D mesh. However, these algorithms only detect a pair 
of symmetric regions and their transformation, and thus cannot 
extract a set of periodic translations or rotation transformations 
that matches a single region to multiple regions at the same 
time.  
Liu et al. [LM1] proposed an algorithm that extracts a single 
basis region from among the periodically displaced regions in a 
3D mesh of a relief with user interaction. However, this 
algorithm cannot extract a set of periodically-displaced regions 
and the parameters defining the periodicity at the same time. 

1.2 – Purpose and overview of our algorithm 

As mentioned in section 1.1, no algorithm has yet been 
proposed that recognizes periodicities for the reconstruction of   
CAD models from 3D scanned meshes of engineering objects. 
Therefore, in this paper, we propose a new method for 
recognizing periodicities in scanned meshes based on the 
indexed-ICP algorithm. Our method extracts a set of 
periodically-displaced regions and the parameters defining the 
periodicity, such as translational basis vectors or a rotational 
axis and a basis angle from scanned meshes. It enables users to 
reconstruct 3D CAD models that contain compact data 
representations. 
Our basic premise is that all of the periodically-displaced 
regions (PDRs) represent the same geometry, and that one of 
the PDRs can be matched to the other PDRs at the same time 
under a set of periodic translations or rotations. 

Step1: Extraction of periodically-displaced regions and their 
planar parameterization (Section 2) 

Our algorithm first estimates the mesh principal curvatures at 
each vertex based on a local quadratic polynomial surface 
fitting and detects any sharp edges [VS1,MD1]. Then, it 
segments meshes into regions that are bounded by sharp 
edges. Next, it uses the voting scheme and pairwise ICP 
algorithm to select a set of PDRs from among the segmented 
regions using the fact that all PDRs represent the same 
geometry. It then fits a plane for a set of barycenters of the 
selected PDRs. Finally, it projects these barycenters onto the 
plane and calculates the 2D parameters of the projected 
barycenters. 

Step2: Extraction of initial parameters defining a periodicity 
and assignment of indices to PDRs on a 2D plane (Section 3) 
At the beginning of this phase, the user selects either a 
translational or a rotational pattern for the recognition. If a 
translational pattern is selected, our algorithm extracts initial 
translational basis vectors based on Lin’s method [LW1] and 
then assigns indices that specify the multiple of the 
translational basis vectors for each PDR. Alternatively, if a 
rotational pattern is selected, the algorithm extracts an initial 
rotational axis and a basis angle based on a modification of 
Lin’s method [LW1] and then assigns an index that specifies 
the multiple of the rotational basis angle for each PDR. 

Step3: Extraction of optimal parameters defining a 
periodicity on 3D mesh (Section 4) 
The final step extracts optimal parameters defining the 
periodicity, such as translational basis vectors or a rotational 
axis and a basis angle based on the proposed indexed-ICP 
algorithm. Our algorithm calculates the parameters that 
match a single PDR to others using a 3D transformation 
specified by the indices of the PDRs assigned in Step 2 and 
the translational basis vectors or the rotational axis and the 
basis angle. Because our algorithm uses only vertex 
coordinates of the mesh and does not require any additional 

Figure 1: The significance of recognizing periodicities in engineering objects and the scope of our research 
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information in this step, such as curvatures or normal, the 
algorithm can robustly extract parameters from noisy scanned 
meshes. Even if the projecting plane obtained in Step1 contains 
some calculation error due to the scanning noise, our indexed 
ICP algorithm in Step3 compensates by reducing this error. 

In this research, we assumed that there were more regions with 
periodicities in the scanned mesh, than without. We also 
assumed that the 3D geometries of all PDRs were roughly 
identical, and did not include any major flaws due to 
measurement fault. We also deal only with periodicities that 
could be created by a single 3D CAD system modeling 
operation. So far, our algorithm has only deal with 
periodically-displaced regions on planar surface. 

2- Extraction and planar parameterization of 
periodically-displaced regions 

2.1 – Curvature estimation and sharp edges 
extraction 

To estimate mesh principal curvatures robustly on scanned 
meshes, our algorithm first fit the quadratic polynomial surface 

),( vuh  in Eq. (1) for to set of vertices N(i) around each vertex 
ix . 

 5432
2

1
2

0),( avauauvavauavuh +++++=  (1) 

N(i) was defined as the set of vertices topologically connected 
to the central vertex ix , including ix , within the specified 
Euclidean distance satisfying Eq. (2): 

 ,|||| ,avgiij lW ⋅<−xx  (2) 

where li,avg is the average length of the edges connected 
to ix and W is the parameter specifying the neighboring size. 
We chose W=3.0 for all 3D scanned meshes with measurement 
noise based on our previous experiments. We then calculated 
the principal curvatures max,iκ  and min,iκ  at the corresponding 
point on ),( vuh  of ix . Detailed algorithms of these processes 

are precisely described in [VS1,MD1]. Next, our algorithm 
classified a vertex ix  if it satisfied the condition in Eq. (3) 
[VS1,MD1]. 

(a) Real object

(d) Estimated max. curvature (e) Extracted sharp edges

(f) Segmentation (g) Extracted periodically
displaced regions

(b) Scanned mesh (c) Cut off partial mesh
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Figure 3: Extraction of periodically displaced regions 

Figure 2: An overview of our algorithm 
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The threshold sharpth  had to be set according to the geometry 
and the resolutions of the mesh. Intuitively, a larger sharpth  
would induce a smaller number of sharp vertices, and vice 
versa. In our previous study [MD1], we found that this 
curvature estimation worked well even for noisy CT or laser 
scanned meshes.  
Figure 3 shows an example of this process. The object in 
Figure 3(a) was scanned with an X-ray CT scanning system, 
and the mesh in Figure 3(b) was reconstructed from the scan. 
We then cut off the scanned mesh to obtain the partial mesh in 
Figure 3(c) and applied the algorithm to the partial. Figure 3(d) 
shows the estimated maximum curvatures and Figure 3(e) 
shows the extracted sharp edges. 

2.2 – Extraction of periodically displaced regions 

2.2.1 – Segmentation 

 Our algorithm next segmented a mesh into a set of 
regions }{ iR . A region is defined as a set of topologically-
connected vertices that do not include sharp vertices. Example  
segmentation results are shown in Figure 3(f). 

2.2.2 – Selection of PDRs 

After the segmentation, our algorithm selected a set of 
periodically-displaced regions }{ jPDR from }{ iR in order to 
identify the periodicity. Each jPDR  represented the same 
geometry and their areas were therefore approximately equal. 
Under this assumption, our algorithm selected a jPDR first by 
a voting scheme of the region’s areas and next with a pairwise 
ICP algorithm [BM1,CM1]. We approximated the areas of the 
regions by the sums of the triangular areas that were connected 
to the vertices in these regions. 

Selection of PDRs by voting scheme 
 First, our algorithm created voting bins which were divided by 

areaN and whose maximum value was the sum of the triangular 
areas in the mesh. Each region then cast a vote to its 
corresponding bin based on the sum of the triangular areas. 

Finally, the regions that cast votes to the bin with the most 
votes were selected as candidate PDRs. We set 50=areaN for 
all meshes in this paper. 

Selection of PDRs using a pairwise ICP algorithm 
The voting scheme for the regions’ areas mentioned in the 
previous section reduced the number of PDR candidates. 
However, non-PDRs still remained after this scheme is 
applied. Therefore, our method next used the pairwise 
Iterative closest point (ICP) algorithm [BM1,CM1] to 
accurately select PDRs from the remaining regions 

}1|{ rem
j njR ≤≤ . Here, we assumed that most of the 

remaining regions were PDRs. This method still works well 
even if we cannot identify all PDRs which should be 
recognized. The ICP algorithm matched pairs of regions so 
that the sums of the distances between the corresponding 
points were minimized. Details are described in section 4.1. 
All PDRs represented the same geometry, and pair of PDRs 
could therefore be matched by the ICP algorithm so as to 
minimize their average distances. However, when a PDR and 
a non-PDR were paired, the distance increased. Based on this 
fact, our method applied the following procedures for 
selecting PDRs. 
Randomly select five regions }{ iQ among }{ jR , and for 
each iQ , create a set of pairs }1|,{ rem

jii njRQG ≤≤〉〈= . 

1. For each 〉〈 ji RQ , , apply the ICP algorithm to match 
them and compute the averaged distance ije between the 
corresponding points. 

2. For each iG , count the number of false pairs in  whose 
ije  is more than the threshold PDRth . We set PDRth so 

that it became proportional to the averaged edge length 
avgl  of the mesh, such as avgPDRPDR lth τ= . We usually set 

0.1=PDRτ . 
3. If rem

i nn α> , verify that iQ  is not a PDR and then do 
not apply the following procedure to iG . Otherwise, 
select iQ  as a PDR and then evaluate ije  for each pair 

〉〈 ji RQ ,  in iG . If ije  is less than PDRth , select jR  as a 
PDR. Here we set 5.0=α  and 0.1=PDRτ .   

As a result of this process, a set of periodically-displaced 
regions }{ kPDR were selected accurately, as shown in Figure 
3(g). Figure 4 shows an example of this process. In this 
example, six PDRs (●) and three non-PDRs (■and ▲) are 
apparent in the mesh. First, three PDRs and two non-PDRs 

0.0

thPDR

1Q 2Q 3Q 4Q 5Q

…
11e 12e 19e 21e 22e 29e 51e 52e 59e31e 32e 39e 41e 42e 49e… … … … …

1G 2G 3G 4G 5G

31 =n 32 =n 73 =n 84 =n 35 =n

…
1R 2R 9R6R 1R 2R 9R6R1R 2R 9R6R1R 2R 9R6R1R 2R 9R6R… … … … … … … …

 

Figure 4: Selection of periodically-displaced regions by pairwise ICP algorithm 
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(■  and ▲ ) were selected as }{ iQ , and then for each pair, 
〉〈 ji RQ , , ije  was computed by applying the ICP algorithm. 

Since 3n and 4n were larger than the threshold remnα , 3Q  and 
4Q  were designated as non-PDRs. Conversely, }61|{ ≤≤ iRi  

were selected as PDRs. 

3.2 – Margin 

Next, our algorithm calculated the barycenter jB of each jPDR  
and fitted a least-squares plane to the set of jB . Each jB was 
then projected onto the plane and their parameters ),( jj vu  
were calculated on the plane. Axes u and v on the plane were 
arbitrarily defined so as to be orthogonal to one another. 
 
3- Extraction of periodically-displaced regions 
and their planar parameterization 

At the beginning of this step, we selected either a translational 
or a rotational pattern for periodicity recognition. Then, our 
algorithm calculated the initial parameters of the periodicity of 
the selected pattern. 
A single PDR can be matched to others one at a time under a 
set of periodic translations or rotations. Therefore, a projected 
barycenter can also be approximately matched to others under 
the same transformations. 
Under this assumption, our algorithm first calculated the initial 
parameters of a periodicity using Lin’s method, described in 
3.1. It then used the initial parameters to assign indices to each 
PDR. The advantage of this algorithm was its tolerance for the 
irregular sampling of projected barycenters, which were caused 
by differences in mesh vertex distribution. 

3.1 – Extraction of initial translational parameters 
and assignment of indices to PDRs 

In translational periodicities, a set of projected barycenters 
}{ iPB  form an approximate parallelogram grid on the 

projecting plane, as shown in Figure 5. This grid can be 
spanned by one or two translational basis vectors. Our 
algorithm used Lin’s method [LW1] to find these vectors and 
assign indices to each iPDR . This algorithm is summarized as 
follows: 

Calculate the translational basis vectors: 
1. Regard the projected barycenters }{ iPB  as a set of 2D 

vectors }1),({ nivu iii ≤≤=v originating from )0,0(1 =v . 
Here n is the number of PDRs. Then, create a 2D 
accumulate array ),( jiS  and initialize entries of the array 

0),( =jiS  for nji ≤≤ ,1 . For each vector jv , 
where nj ≤≤2 , perform the following procedures: 

2-1. For each vector kv , where nk ≤≤2  and which is 
collinear to jv , compute the value of a using 

|||| jka vv= . Let a′  be the round integer of a. 
2-2. Update the value of ( )jS ,1  using the following 

scoring rule: 

||
||21),1(),1(

j

aajSjS
v

′−−
+=  

2. For each non-collinear pair of vectors iv  and jv , 
where nji ≤<≤2 , perform the following procedures 
as shown in Figure 5: 
3-1. For each vector kv , where nk ≤≤2 , compute the 

value of a and b using the following equation: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
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where a and b are coefficients of the linear 
combination of iv  and jv  for kv . Let a′  and b′  
be the round integers of a and b respectively. 

3-2. Update the value of ),( jiS  using the following 
scoring rule: 

|)||,max(|
|)||,max(|21),(),(

ji

bbaajiSjiS
vv

′−′−−
+=  

3. Let the entry with the highest score in the array S 
located at )ˆ,ˆ( ji . Set

î1 vu = ,
ĵ2 vu = , 213 uuu += , 

and 214 uuu −= . Select the pair of vectors 
from 〉〈 4321 ,,, uuuu  with the smallest and the second 
smallest length. Call this pair of vectors init

1t  and init
2t .  

u

v

kv

iv

jv

1v init
1t

init
2t

 

Figure 5: Extraction of initial translational parameters 
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Figure 6: Examples of the ),( jiS  
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4. Output init
1t  and init

2t  as the initial translational basis 
vectors and then stop the process.  

For each pair of vectors iv  and jv , if both vectors were short 
and located near a point of the parallelogram grid, their 
corresponding score ),( jiS  was high, as shown in Figure 6. 

Index the PDRs: 

For each vector ),( iii vu=v , where ni ≤≤2 , compute the 
value of c and d using the following equation: 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ −

i

iinitinit

v
u

d
c 1

21 tt
, 

where c and d are coefficients of the linear combination of init
1t  

and init
2t  for iv . Let c′  and d ′  be the round integers of c and d 

respectively. Then, the indices of iPDR  are computed as 
),( dc ′′ . 

3.2 – Extraction of initial rotational parameters and 
assignment of indices 

In rotational periodicities, a set of projected barycenters }{ iPB  
forms an approximate radial grid on the plane, as shown in 
Figure 7. The grid is spanned by a rotational basis angle around 
a center of rotation. To find this angle and the center, and to 
assign an index to each iPDR , our algorithm used a modified 
version of Lin’s algorithm [LW1]. This algorithm is 
summarized as follows: 

Calculate the initial rotational axis: 
1. Calculate the initial directional vector initd  of the 

rotational axis as the normal vector of the projecting 
plane.  

2. For each triplet 〉〈 kji PBPBPB ,,  of the projected 
barycenters, calculate two perpendicular bisectors ijl  
and ikl  and then compute the intersectional points ijkc  of 

ijl  and ikl . 
3. Calculate the averaged point of all ijkc  and regard it as 

both the center of the circle on the plane and the initial 
point initc  on the rotational axis. 

Calculate the initial rotational basis angle: 
1. Regard the projected barycenters as a set of 

vectors }1|),({ nivu iii ≤≤=v  originated by initc . Then 
create a 2D accumulate array ),( jiS  and initialize entries 
of the array 0),( =jiS  for nji ≤≤ ,1 . 

2. For each pair of vectors iv  and jv , where 
nji ≤<≤2 , perform the following procedures: 

2-1. For each vector kv , where nk ≤≤2 , compute the 
value of a using aba θθ= , where 

),( jia ang vv=θ  and ),( kib ang vv=θ . Let a′  be 
the round integer of a. 

2-2. Update the value of ),( jiS  using the following 
scoring rule: 

),(

21
),(),(

jiang

aa
jiSjiS

vv

′−−
+=  

3. Let the entry with the highest score in the array S locate 
at )ˆ,ˆ( ji  and let the initial rotational basis angle be 

),( ˆˆ ji
init ang vv=θ .  

4. Output initθ  as the initial rotational basis angle and then 
stop the process. 

For each pair of vectors iv  and jv , if the vectors were 
located near the vertices of a radial grid and if their angle 
was small, their corresponding score was high, as shown in 
Figure 8. 
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Figure 7: Extraction of initial rotational parameters 
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Figure 8: Examples of the ),( jiS  
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Index the PDRs: 
For each vector ),( iii vu=v , where ),( iii vu=v , compute the 
value of c using init

cc θθ= , where ),( 1vv ic ang=θ . Let c′  be 
the round integer of c . Then, the iPDR  index is computed as 
c′ . 

4- Extraction of optimal parameters of periodicity 
from 3D meshes based on indexed-ICP algorithm 

4.1 – ICP algorithm 

The Iterative closest point (ICP) algorithm was first proposed 
by Besl and McKay [BM1] and Chen and Medioni [CM1] for 
matching a pair of scanned data 〉〈 YX ,  , and many variants 
have since been proposed [RL1]. In the ICP algorithm, the 
optimal transformation can be found where the matching error 
between corresponding points is minimized. If we denote such 
a transformation iXYXYi xRtx +=′  as 〉〈= XYXYXY RtT , , where 

Xi ∈x , it can be calculated by the following procedure: 
1. Initialize: Compute the initial transformation init

XYT , and 
set 0=itr . 

2. Find closest points: For each point itr
ix  in the current 

position of the data X, find the point 0
)(icy  in Y that is 

closest to itr
ix . 

3. Compute a transformation: Compute the transformation 
itr
XYT  so that the sum of matching errors between 

corresponding points is minimized. The objective 
function to be minimized is:   

  
.

1

210
)(∑ −=

=

+
N

i

itr
iic

itrF xy
 

(4) 

4. Update points and calculate error: Update points using 
the current transformation itr

XYT  such that 
01
iXYXY

itritritr
i xRtx +=+ , then calculate the current average 

matching error as NFE itritr 21)(= . 
5. Termination condition: If ε>− +1itritr EE , update 

1+← itritr  and repeat the process from step 2. 
Otherwise, output the current transformation itr

XYT  as the 
optimal opt

XYT , and stop the process. 
 

This ICP algorithm can calculate a transformation that 
matches a single pair of scanned data. However, it cannot 
extract a set of periodic transformations simultaneously that 
match single data to multiple data which are periodically 
displaced in groups. Therefore, we propose an indexed-ICP 
algorithm, which calculates such sets of periodic 
transformations. 

4.2 – Our indexed-ICP algorithm 

In this section, we describe our indexed-ICP algorithm which 
extracts optimal parameters for defining translational or 
rotational periodicities from 3D scanned meshes. 

4.2.1 – Extraction of optimal translational 
parameters 

In translational cases, a single PDR can be matched to other 
PDRs at the same time under a set of periodic translations 
along the basis vectors 1t  and 2t . Here we denote ijPDR  
as }1,0,0|{ 21, ijkijij nkNjNiPDR ≤≤≤≤≤≤= x , where 1N  
and 2N  are the maximum indices for 1t  and 2t  respectively. 
The point kij ,x  can be matched to its corresponding point 

)(,00 kcx  such that kijkc ji ,21)(,00 xttx ++= , where i and j are 
the indices calculated in Step 3.1 that specify the multiples of 
the translational basis vectors. To find such vectors, our 
indexed-ICP algorithm for the translational pattern performs 
the following procedure: 

1. Initialize: Set init
1

0
1 tt −= , init

2
0
2 tt −=  and 0=itr . 

2. Find closest points: For each ijPDR , not including 
00PDR , perform the following process: 

For each point itr
kij ,x  in the current position of ijPDR , 

find the point 0
)(,00 kcx  closest to itr

kij ,x  that satisfies the 
normal constraint in Eq.(5): 

 ,)(cos ,
0

)(,00
1

nrm
itr

kijkc th<⋅− nn  (5) 

where 0
)(,00 kcn  and itr

kij ,n  are the outward unit normal 
vectors at 0

)(,00 kcx  and itr
kij ,x . We typically set 

[deg]0.15=nrmth  . 
3. Compute translational vectors: Compute the current 

translational basis vectors itr
1t  and itr

2t  by minimizing 
the sum of matching errors between corresponding 
points in Eq.(6):  

 .}{
1

0

1

0 1

20
,21

0
)(,00

1 2

∑ ∑ ∑ ++−=
−

=

−

= =

N

i

N

j

n

k
kij

itritr
kc

itr ij

jiF xttx  (6) 

This can be expressed as a parallel linear equation and 
can be solved for itr

1t  and itr
2t  using Gauss-Jordan 

elimination [PT1].  
4. Update points and calculate error: Update the points 

using the current vectors itr
1t  and itr

2t , such that 
0

,21
1

, kij
itritritr

kij ji xttx ++=+ . Then, calculate the average 
error as all

itritr NFE /)( 211 =+ , where allN  is the sum of 
the number of vertices in }{ ijPDR . 

y

z

x

21 tt ji +

1t

2t

21 tt lk +

ijPDR

klPDR

00PDR

Figure 9: Indexed-ICP algorithm for Translational pattern
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5. Termination condition: If transitritr EE ε>− +1 , update 
1+← itritr  and repeat the process from Step 2. 

Otherwise, output the optimal translational basis vectors 
as itropt

11 tt −=  and itropt
12 tt −= , and stop the process. We set 

the tolerance transε  proportional to the average edge 
length avgl  such that avg

trans lαε =  typically with 001.0=α . 

4.2 – Extraction of optimal rotational parameters 

In rotational cases, a single PDR can be matched to other PDRs 
simultaneously under a set of periodic rotations around an axis 

〉〈= cda , , where d  is the axis directional vector and c  is an 
arbitrary point on the axis. Here, we denote iPDR  as 

}1,,0|{ , ikii nkNiPDR ≤≤≤≤= x . The point ki ,x  can be 
matched to its corresponding point )(,0 kcx  such that )(,0 kcx , 
where i is the index calculated in Step 3.2 that specifies the 
multiple of the basis angle. To find such an axis and basis 
angle, our indexed-ICP algorithm for the rotational pattern 
performs the following procedure:  
 
1. Initialize: Set initdd =0 , initcc =0 , initθθ −=0  and 0=itr . 
2. Find closest points: For each iPRR , where Ni ≤≤1 , 

perform the following process: 
For each point itr

ki,x  in the current position of iPRR , find 
the point 0

)(,0 kcx  closest to itr
ki ,x  that satisfies the normal 

constraint in Eq.(7):  

     ,)),((cos ,
0

)(,0
1

nrm
itr

ki
itritr

ikc thi <⋅− naRn θ  (7) 

where 0
)(,0 kcn  and itr

ki ,n  are the outward unit normal vectors 
at 0

)(,0 kcx  and itr
ki ,x . (We typically set [deg]0.15=nrmth .) 

3. Compute rotational axis and basis angle: Compute the 
directional vector itrd , the point on the axis itrc , and the 
basis angle itrθ  by minimizing the sum of matching errors 
between corresponding points in Eq.(8): 

 
.),(

1

1 1

20
,

0
)(,0∑∑

−

= =
−=

N

i

n

k
ki

itritr
kc

itr i

iG xaRx θ
 

(8) 

This non-linear equation can be solved for itrd , itrc , and 
itrθ  using Levenberg-Marquardt algorithm [PT1]. 

4. Update points and calculate error: Update the points 

using the current rotational parameters itrd , itrc  and itrθ , 
such that 0

,
1

, ),( ki
itritritr

ki i xaRx θ=+ . Then calculate the 
average error as all

itritr NGE /)( 211 =+ , where allN  is the 
sum of the number of vertices in }{ iPDR . 

5. Termination condition: If rotitritr EE ε>− +1 , update 
1+← itritr  and repeat the process from Step 2. 

Otherwise, output the optimal rotational parameters as 
itropt dd = , itropt cc =  and itropt θθ −= , and stop the 

process. (We set rotε  such that avg
rot lβε = , typically 

with 001.0=β .) 

5- Results 

5.1 – Verification of parameters extraction results 

We have evaluated the accuracy of the parameters of 
periodicity obtained using our proposed algorithm. For the 
evaluation, we used the meshes in Figures 11(a) and 12(a), 
which were created by triangulating the CAD models using 
the FEM meshing tool. Then, we added artificial noise to 
these meshes by moving each vertex along its normal 
direction by a Gaussian-distributed random distance with 5% 
standard deviation proportional to the average mesh edge 
length. The meshes in Figures 11(a) and 12(a) contained 
about 20,373 and 15,169 vertices, and their average edge 
lengths were 0.70 and 0.97 mm, respectively. 
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Figures 11(b-d) and 12(b-d) show the accuracy evaluation 
results for the extracted translational and rotational parameters, 
respectively. As shown in Figures 11(b) and 12(b), our 
indexed-ICP algorithm gradually reduced the average error 

itrE  between corresponding points. Figures 11(c) and 12(c) 
show the extracted parameters. The initial parameters were 
appropriately optimized so as to be similar to the correct user-
defined parameters. As shown in Figures 11(d) and 12(d), we 
translated and rotated one PDR against the others according to 
the extracted periodicity  parameters and their indices. This 
demonstrates that a PDR can be accurately transformed to 
another according to the assigned indices and extracted 
parameters. The average errors were reduced from 0.13 mm to 
0.11 mm, and from 1.04 mm to 0.26 mm, respectively, by the 
indexed-ICP algorithm.  

5.2 – Experimental results for scanned meshes 

We applied our proposed algorithm to 3D laser and X-ray CT 
scanned meshes of real-world objects. All of the experiments 
were processed on a Core2 Quad 2.4GHz CPU. Figure 13 
shows the results of the translational periodicity recognition. 
We first scanned the LEGO block in Figure 13(a) using a 3D 
laser scanning system and then reconstructed the mesh in 
Figure 13(b) from part of the scanned data. The average edge 
length of the mesh was 0.93 mm. As shown in Figure 13(d), 
our method was able to accurately extract all of the PDRs 
without extracting any non-PDRs. Figure 13(c) shows the 

convergence observation of the indexed-ICP. The average 
matching error between corresponding points was gradually 
reduced from 0.72 to 0.51 mm. Figure 13(d) shows the points 
transformed according to the extracted initial and optimal 
parameters defining the translational periodicity with indices. 
This shows that PDRs in the cylindrical region were more 
appropriately transformed so that pairs of PDRs were closer 
together, according to the optimal parameters, than the initial 
ones. Additionally, it shows that our indexed-ICP algorithm 
was able to accurately extract the translational parameters. In 
this model, each PDR contained about 70 vertices and the 
total running time was 4.84 sec. Figures 14 and 15 show the 
results of the rotational periodicity recognition using the X-
ray CT scanned meshes. The mesh in Figure 14 is the same 
as that used in Figure 3. The average edge lengths were about 
1.02 and 1.00 mm, respectively. As shown in Figures 14(b) 
and 15(d), our method was able to accurately extract all of 
the PDRs without extracting any non-PDRs. Figures 14(a) 
and 15(c) show the average matching errors observed in the 
indexed-ICP. The errors were gradually reduced to  
satisfactorily small values with reference to the average edge 
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Fig 13: Laser scanned mesh results 
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Fig. 12: Evaluation of the accuracy of rotational parameter
extraction 



IDMME - Virtual Concept 2008 Recognizing Periodicities on 3D scaned meshes  

IDMME_P35  Copyright IDMME - Virtual Concept 

lengths. Figures 14(b) and 15(d) show the transformation 
results using the extracted initial and optimal rotational 
parameters with indices. These show that the PDRs were 
appropriately transformed so as to be close together according 
to the optimal parameters, and that our indexed-ICP algorithm 
was able to accurately extract the rotational parameters. In 
these models, each PDR contained about 100 and 1,300 
vertices, and the total running times were 5.28 and 52.39 sec, 
respectively. 

6- Discussion 

Assumption.  In this work, we assume that meshes are noisy, 
but the edge lengths of the meshes are relatively constant and 
therefore the vertices are approximately uniformly distributed 
on the surfaces. All the meshes in this paper follows this 
assumption. If meshes are reconstructed by marching cube 
based algorithms from the X-ray CT scanned data, they satisfy 
such properties (i.e. constant edge lengths and equal vertices 
distributions). Users may have obtained scanned meshes that 
do not follow the assumption. In such a case, users can remesh 
them and then can apply our method to recognize the 
periodicities. 

Limitations.  Our algorithm contains several limitations and 
the main two are as follows: First, it cannot detect periodicities 
if one correct PDR is over-segmented into several regions. We 
will overcome this limitation by finding spatially neighboring 
regions each of which belongs to a different periodicity but has 

similar periodic parameters, and then by appropriately 
combining them into a single PDR. Second, our method 
cannot detect periodicities from meshes that do not include 
sharp edges such as free-form shapes because such meshes 
cannot be appropriately segmented into regions.   

7- Conclusion and future works 

We have proposed a method for recognizing 3D periodicities 
based on the indexed-ICP algorithm in order to enable the 
reconstruction of CAD models from scanned meshes of 
engineering objects. By applying the proposed method to 
various CAD triangulated and scanned meshes, we 
demonstrated that our method could accurately and robustly 
recognize translational and rotational periodicities in meshes. 
In future works, we will attempt to improve the extraction 
component of the current algorithm for multiple regions. Our 
current method deals only with PDRs, each of which can be 
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Fig. 14: X-ray CT scanned mesh results 
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Fig 15: X-ray CT scanned mesh results 
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segmented into a single region. However, in some meshes, a 
PDR can be segmented into multiple regions. For such cases, 
our method needs to first combine the multiple regions into a 
single set of regions and then apply the proposed method for 
periodicity recognition. Moreover, we will try to recognize 
periodicities on thin, plate-like meshes, such as mobile phone 
housings, where each PDR contains vertices only at regional 
boundaries. 

Acknowledgments 

This work was financially supported by a grant-in-aid under 
the Project No. 19360067. We would like to thank Ichiro 
Nishigaki, Tatsuro Yashiki and Noriyuki Sadaoka of HITACHI 
Co., Ltd., for providing the X-ray CT scanned meshes in 
Figures 3, 14, and 15. We would also like to thank Akira 
Manjome of the Hokkaido Industrial Research Institute for 
providing the 3D laser scanned mesh in Figure 13.  

REFERENCES 
[BM1] Besl P. and McKay N. A method for registration of 3-D 
shapes. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 14(2): 239-256, 1992 

[CG1] Chaperon T. and Goulette F. Extracting Cylinders in full 3D 
Data Using a Random Sampling Method and the Gaussian Image. 
Proceeding of the Vision Modeling and Visualization Conference, 35-
42, 2001 

[CM1] Chen Y. and Medioni G. Object modeling by registration of 
multiple range images. Image and Vision Computing, 10(3): 145-155, 
1992 

[KF1] Ke Y., Fan S., Zhu W., Li A., Liu F. and Shi X. Feature-based 
reverse modeling strategies. Computer-Aided Design, 38(5):  485-506, 
2006 

[KZ1] Ke Y, Zhu W, Liu G. and Shi X. Constrained fitting for 2D 
profile-based reverse modeling, Computer-Aided Design, 38(2):104-
114, 2005 

[LC1] Liu, Y., Collins, T.T. and Tsin Y. A computational model for 
pattern perception based on frieze and wallpaper groups. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 26(3):   
354-371, 2006 

[LH1] Lorensen W. E. and Harvey E. C. ACM SIGGRAPH 
Computer Graphics, 21(4): 163-169, 1987 

[LM1] Liu S., Martin R.R., Langbein F.C. and Rosin P.L. Segmenting 
Periodic Reliefs on Triangle Meshes. Lecture Notes in Computer 
Science, 4647, 290-306, 2007 

[LW1] Lin H.C., Wang L.L. and Yang S.N. Extracting periodicity of 
a regular texture based on autocorrelation functions. Pattern 
Recognition Letters, 18: 433-443, 1997 

[MD1] Mizoguchi T., Date H., Kanai S. and Kishinami T. Quasi-
optimal mesh segmentation via region growing/merging. Proc. of 
ASME/DETC, No.35171. 2007 

[MG1] Mitra N.J., Guibas L.J. and Pauly M. Partial and approximate 
symmetry detection for 3D geometry. ACM Transactions on Graphics, 
25(3): 560-568, 2006 

[MZ1] Müller P., Zeng G., Wonka P. and Gool L.V. Image-based 
procedural modeling of facades. ACM Transactions on Graphics, 
26(3):  No.85, 2007 

[PS1] Podolak J., Shilane P., Golovinskiy A., Rusinkiewicz S. and 
Funkhouser T. A planar-reflective symmetry transform for 3D 
shapes. ACM Transactions on Graphics, 25(3): 549-559, 2006 

[PT1] Press W.H., Teukolsky S.A. “Vetterling W.T. and Flannery   
B.P. Numerical Recipes in C++: The Art of Scientific Computing, 
Second Edition,” Cambridge University Press, 1992 

[RL1] Rusinkiewicz S. and Levoy M. Efficient variants of the ICP 
algorithm. Proc. of International Conference on 3D Digital Imaging 
and Modeling, 145-152, 2001 

[S1] Suzuki H. Convergence engineering based on X-ray CT 
scanning technologies. Proc. of JSME Digital Engineering 
Workshop, 74-77, 2005 

[TO1] Thompson W.B., Owen J.C. de St. Germain H.J., Stark S.R. 
and Jr. Henderson T.C. Feature-based reverse engineering of 
mechanical parts. IEEE Transactions on Robotics and Automation,  
57-66, 1999 

[VF1] Várady T., Facello M.A. and Terék Z. Automatic extraction 
of surface structures in digital shape reconstruction. Computer-
Aided Design, 39(5): 379-388, 2007 

[VS1] Vieira M. and Shimada K. Surface mesh segmentation and 
smooth surface extraction through region growing. Computer-Aided 
Geometric Design, 22(8): 771-792, 2005 

 


