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Abstract. For effective application of laser or X-ray CT scanned mesh models 
in design, analysis, and inspection etc, it is preferable that they are segmented 
into desirable regions as a pre-processing. Engineering parts are commonly 
covered with analytic surfaces, such as planes, cylinders, spheres, cones, and 
tori. Therefore, the portions of the part’s boundary where each can be 
represented by a type of analytic surface have to be extracted as regions from 
the mesh model. In this paper, we propose a new mesh segmentation method for 
this purpose. We use the mesh curvature estimation with sharp edge 
recognition, and the non-iterative region growing to extract the regions. The 
proposed mesh curvature estimation is robust for measurement noise. 
Moreover, our proposed region growing enables to find more accurate 
boundaries of underlying surfaces, and to classify extracted analytic surfaces 
into higher-level classes of surfaces: fillet surface, linear extrusion surface and 
surface of revolution than those in the existing methods. 

1   Introduction 

3D laser and X-ray CT scanning systems are widely used in the field of reverse 
engineering to acquire scanned data of real-world objects. To use the acquired 
scanned data in today’s digital engineering, it is easily converted into a 3D mesh 
model by a surface reconstruction algorithm such as marching cubes [1]. When we 
utilize 3D scanned mesh model for repairing, replication, analysis, or inspection of 
engineering parts, we need to efficiently segment the mesh model into desirable 
regions depending on its applications. 

The surfaces of engineering parts mainly consist of a set of analytic surfaces, such 
as planes, cylinders, spheres, cones, and tori. Therefore, we need to extract regions 
each of which can be approximated by a simple analytic surface from a mesh model. 
However, few methods have been proposed to extract analytic surfaces from a mesh 
model. Moreover, in these methods, the accuracies of extracting regions from noisy 
mesh models and the range of extracted analytic surface classes were not necessarily 
sufficient from the aspect of practical engineering use. 

The purpose of this research is to propose a new method that segments a scanned 
mesh model into regions each of which can be approximated by a simple analytic 
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surface. In this paper, we only deal with triangular mesh models whose surfaces are 
completely composed of planes, cylinders, spheres, cones, and tori.  

Our algorithm is composed of three steps. The first step accurately estimates mesh 
principal curvatures based on a modified method of Razdan’s [2]. It allows robust 
estimation for a noisy scanned mesh and ensures more accurate estimation even 
around sharp edges where the previous methods generated large estimation error 
(section 3). The second step extracts analytic surfaces based on the modified version 
of Vieira’s region growing algorithm [3]. Our curvature estimation and limiting the 
fitting surface only to the analytic enable to initially create large seed regions in the 
region growing. This also enables non-iterative region growing and the efficient linear 
LSM in analytic surface fitting (section 4). The final step classifies extracted analytic 
surfaces into higher-level classes of surfaces than those in the existing methods 
[4][5][6]: fillet surface, linear extrusion surface, and surface of revolution.  

2   Related Works 

Mesh segmentation is a technique that segments a mesh model into desirable regions 
depending on applications, and many methods have been proposed for this 
segmentation in computer graphics(CG)[7][8][9] and engineering field. These works 
in CG are aiming at decomposing mesh surfaces into visually meaningful sub-meshes. 
On the other hand, the goal of the segmentation in an engineering field aims at 
decomposing the mesh surface into functionally meaningful surfaces. Therefore 
segmentation in CG cannot be directly applied to the engineering purpose. The mesh 
segmentation in the engineering field is roughly divided into following three groups: 

The first group is to extract regions separated by sharp edges on a mesh model. In 
this group, a watershed-based approach has been well studied [10][11][12]. However 
they cannot extract regions separated by smooth edges (i.e., a region consisting of a 
plane smoothly connected to a cylinder), and therefore cannot identify the surface 
geometry of each segmented region. 

The second group is to extract regions each of which can be approximated by a 
simple free form surface. In this group, a region growing approach [3][13][14] has 
been well studied. However the method did not focus on extracting regions 
approximated by analytic surfaces and their geometric parameters. 

The last group is to extract regions each of which can be approximated by a simple 
analytic surface. Gelfand et al.[4] proposed a method based on eigenvalue analysis of a 
mesh model. Wu et al.[5] proposed a method based on Lloyd’s clustering algorithm. 
However, in their method, the range of extracted analytic surface classes was not 
necessarily sufficient for engineering applications. Benkő et al.[6] proposed the direct 
segmentation for reverse engineering of the engineering part. Their algorithm segments 
a mesh model into regions each of which can be approximated by simple analytic 
surfaces (planes, cylinders, spheres, cones, and tori), linear extrusion surfaces, and the 
surface of revolutions. However this algorithm results in poor segmentation near 
boundaries of surfaces where the indicators may not be properly estimated. And they 
applied their segmentation only for a mesh model with very simple geometry. 
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Fig. 1. Curvature estimation with sharp edges recognition 

(a) Estimated maximum curvature
with sharp edges recognition 

(b) Estimated minimum curvature
with sharp edges recognition

(c) Estimated maximum curvature
without sharp edges recognition 

(a) Estimated maximum curvature
with sharp edges recognition 

(b) Estimated minimum curvature
with sharp edges recognition

(c) Estimated maximum curvature
without sharp edges recognition 

(a) Estimated maximum curvature
with sharp edges recognition 

(b) Estimated minimum curvature
with sharp edges recognition

(c) Estimated maximum curvature
without sharp edges recognition 

(a) Estimated maximum curvature
with sharp edges recognition 

(b) Estimated minimum curvature
with sharp edges recognition

(c) Estimated maximum curvature
without sharp edges recognition  

Fig. 2. Results of curvature estimation 

3   Robust Mesh Curvatures Estimation by Recognizing Sharp 
Edges 

To estimate mesh curvatures on a noisy meshes, Razdan proposed the method based 
on a local biquadratic Bézier surface fitting [2]. This method locally fits the surface 
for a mesh vertex and a set of vertices included in its 2-ring, and estimates mesh 
curvatures at the vertex from the fitted surface. We simply modify this method, and 
fits the surface for each vertex iv  and a set of vertices directly connected to vi within 
those which satisfy the condition of eq.(1),  

avgiij lW ,|||| ⋅<− vv                                                  (1) 

where avgil ,  is an average length of edge connecting to the vertex vi, and W is a 

parameter to specify the size of surface-fit. Our algorithm analyses the fitted surface 
and estimates two principal curvatures by the method [2] with the parameter α=0.9. 
Then we define the one whose absolute value is the larger as the maximum principal 
curvature max,iκ , and the other one as the minimum principal curvature min,iκ . 

To robustly estimate principal curvatures on noisy scanned meshes, a parameter W 
should be larger. However, a larger parameter setting results in poor curvature 
estimation around sharp edges. To solve the problem, we propose the following “two-
pass” curvature estimations. 
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In the first pass, principal curvatures are estimated by fitting the relatively small 
surface on the mesh with W=2. If the maximum curvature max,iκ  of the vertex is larger 

than the user specified parameter thse, the vertex is classified as a sharp vertex as 
shown in Fig.1. This parameter setting is as the same as Vieira’s method [3]. 

In the second pass, principal curvatures are re-calculated for non-sharp vertices 
with W=5. In this step, sharp vertices and neighboring vertices beyond them are not 
included for the Bézier surface fitting as shown in Fig.1. This results in better 
accuracy of principal curvatures of vertices near sharp edges as shown in Fig.2.  

Moreover in our method, the normal vector in′
 for the vertex vi is also re-

calculated as the normal of the fitted Bézier surface. This normal vector is better in 
accuracy than the one ni calculated using connected triangles for noisy mesh models. 
The normal vectors ni are used for region growing described in section 5.2, and the re-
calculated normal vectors in′  are used for the analytic surface fitting described in 

section 5.1. 

4   Seed Region Creation 

Next, seed regions are created on the surface of a mesh by classifying estimated 
principal curvatures. In this paper, a seed region means a set of topologically 
connected vertices that are supposed to be on a certain analytic surface. Our seed 
region creation algorithm is composed of following four steps. 

Step1: Allocation of labels for planes, cylinders/cones, and spheres 
A label for plane, cylinder/cone, and sphere that discriminates on which surface the 
vertex vi lies is allocated to it. Our method allocates the labels for non-sharp vertices 
classified in sec.3 according to eq.(2) by evaluating two principal curvatures. Three 
parameters 321 ,, εεε are used in eq.(2). Ideally, 321 ,, εεε  are zero, however they may 

not be zero due to scanning noise. We found that 01.0321 === εεε  roughly provided 

good results for mesh models both with artificially-added and real-scanning noise. 
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Step2: Classification of cylinders/cones and smoothly connected cylinders 
Step 1 allocates the label 2 for both cylinders and cones. In this step, these cylinders 
and cones are discriminated. The smoothly connected cylinders are also separated into 
different single cylinders. To achieve this, a similarity value of the principal 
maximum curvature )( ivf  is calculated for each vertex iv  according to eq.(3).  
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Table 1.Thresholds for seed region creation 

surface
type

threshold
thseed

plane
cylinder
sphere
cone
torus

2
4
5
4
7

surface
type

threshold
thseed
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2
4
5
4
7

surface
type

threshold
thseed
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torus

2
4
5
4
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type
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2
4
5
4
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Fig. 3. Result of seed region creation 
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where )*(* iN  is a set of vertices in 2-ring of the vertex vi. Ideally, f(vi) is zero in 

cylinders and positive value in cones. Therefore if f(vi) is larger than the 
threshold conecylth _ , the vertex is assumed to belong to a cone, and label(vi) is changed 

to 4 and if f(vi) is smaller than the threshold, label(vi) is preserved. For our 
implementation, 4.001.0_ -=conecylth  provides a good result.  

Step3: Allocation of labels for tori 
Previous two steps allocate labels for plane, cylinder, sphere, and cone, therefore most 
of vertices with label 0 are assumed to lie on tori. To allocate torus labels to such 
vertices, principal curvatures of vertices that have label 0 are evaluated.  

A torus is the excursion surface where a sphere is rotated along an axis. Therefore 
one of the principal curvatures corresponds to the constant curvature of the radius r  
of the sphere. We use this property and create a histogram of discretized principal 
curvatures for a set of vertices that have the label 0. If the number of vertices that has 
a particular discretized curvature value is larger than the threshold torusth , label 5 is 

allocated to their vertices. In our implementation, 0.01 for the step of principle 
curvature, and 0.1-0.5% of the number of all vertices for torusth  provided good results 

for most mesh models. 

Step4: Creation of seed regions 
Finally, a seed region is created as a set of topologically connected vertices with the 
same label that has the number of vertices larger than the threshold seedth  shown in 

table1. In our implementation, seedth  corresponds to the minimum number of vertices 

which enables the least square analytic surface fitting that is proposed in this paper 
and is described in section 5.1. Fig.3 shows the results of seed region creation. 

5   Analytic Surface Extraction 

5.1   Analytic Surfaces Fitting to Seed Regions 

In this paper, we propose the following efficient analytic surface fitting where we 
only need to solve the linear least squares problems to find fitted analytic surfaces 
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instead of the non-linear one by utilizing pre-computed normal vectors in′ . Our 
method is less accurate than previous non-linear methods [15][16][17], but faster than 
them, and provides a practically enough results for analytic surface extraction.  

Plane fitting: A plane is defined by its unit normal vector ),,( zyx nnn=n  and a 

distance d  from an origin. Our method calculates n  as the normalized average 
vector of vertex normals in′  in a seed region of the plane. Then the distance d  is 

calculated using linear least squares sense. 
Cylinder fitting: A cylinder is defined by its unit axis direction vector 

),,( zyx ddd=d ，radius r，and an arbitrary point on the axis ),,( zyx ppp=p . First, 

all of vertex normals in′  in a seed region are mapped onto a Gaussian sphere. Then a 

least square plane is fitted so that the plane passes through the end points of in′  in the 

sphere. The axis direction is derived as a unit normal vector of this plane. Next, all 
vertices in a seed region are projected onto the plane whose normal vector is d . Then, 
a circle is fitted to these projected points on the plane in the least squares sense, and 
the radius r  is calculated as the radius of the fitted circle. Finally, the center of the 
circle is also calculated on the projected plane, and it can be easily transformed to p . 

Sphere fitting: A sphere is defined by its center ),,( zyx ccc=c  and radius r . Our 

method solves a linear least squares problem to find the coefficients ),,,( DCBA  

defining the sphere of the implicit form 0222 =++++++ DCzByAxzyx . They are 

easily converted into the center c  and radius r . 
Cone fitting: A cone is defined by its unit axis direction vector ),,( zyx ddd=d ，

apex ),,( zyx aaa=a , and vertical angle θ . The unit axis direction vector d  is 

calculated using the same method as for a cylinder. An apex a  is given from the 
condition that a vector passing through a  and iv  is orthogonal to a normal vector of 

the vertex in′ . This is obtained by finding a least squares solution of a  in 

0)( =−⋅′ ii van . An apex θ  is calculated as the average of angles between d  and a 

vertex normal in′ . 

Torus Fitting: A torus is defined by its unit axis direction vector ),,( zyx ddd=d ，its 

center ),,( zyx ccc=c , the radius of its body r , and the radius of the centerline of the 

torus body R . First, to calculate d and an arbitrary point p on the axis, we use the 
same method as Kós et al.[15]. Kós first calculated the initial estimates of d and p 
using the generalized eigen analysis, and then the precise solutions of them are 
calculated by the iterative method from these initial estimates. We first use Kós’s 
initial estimates as our final solutions of d and p for fitting torus. Next, all vertices in a 
seed region are rotated around the calculated axis so as to be placed onto a plane which 
includes the calculated axis. Then a circle is fitted to the points on the plane in the least 
squares sense. The radius r is calculated as the radius of that circle. The center c is 
calculated according to the condition that the vector toward the center of the torus c 
from the center of the circle is orthogonal to the torus axis. The radius R is also 
calculated as the length between the center of the torus and the center of the circle. 
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Fig. 4. Results of extracted analytic surfaces using the region growing 

5.2   Extraction of Analytic Surfaces Based on Region Growing 

Next, our region growing method makes a set of vertices topologically connected to 
the seed region added to the original seed region if the vertex lies on the fitted surface 
within a specified tolerance. Therefore our algorithm first calculates the positional 
error between the mesh vertex vi and the point p(vi) on the analytic surface which is 
the projection of vi to the surface along ni, and the directional error of the normal 
vectors between them. If the vertex is adjacent to the seed region and satisfies the 
compatibility in eq.(4) and eq.(5), it is added to the seed region. 

( ) avgposii lthv ⋅<− pv                                                  (4) 

( ) normii thvp <−− ))((cos 1 nn                                            (5) 

where avgl  is an average length of all mesh edges. thpos and thnorm  are the thresholds 

of positional and directional errors, and we found in the experiments that 5.0=posth  

and [deg]0.8=normth  provided good results for mesh models measured from CT 

scanning. 
This region growing is done for the seed region in the descending order of the 

number of vertices in the region. This enables to generate a small number of larger 
regions. If all the vertices adjacent to the region do not satisfy eq.(4) or eq.(5), the 
region growing stops. The region can be extracted as a set of topologically connected 
vertices that are approximated by a particular analytic surface. Fig.4 shows the result 
of analytic surfaces extraction. 

6   Recognition of Fillet Surfaces, Linear Extrusion Surfaces, and 
Surfaces of Revolution 

For the effective use of a mesh model in various mesh applications, our method 
recognizes fillet surfaces, linear extrusion surfaces, and surfaces of revolutions which 
are often included in most engineering parts from a mesh model.  

Recognition of fillet surfaces 
We assume that all surfaces in a mesh model are covered with analytical surfaces, and 
fillet surfaces are also represented by them. This assumption enables to classify fillet  
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Fig. 5. Definition of fillet surfaces 

(a) (b) (c)(a) (b) (c)(a) (b) (c)  

Fig .6. (a)(b)Recognitionof fillet surfaces, (c)alinear extrusion surface(red) and surfaces of 
revolution(blue) 

surfaces into three types: cylinders, spheres, and tori [18]. These surfaces can be 
defined based on their geometric parameters and combinations of neighboring 
surfaces as shown in Fig.5. Our method recognizes the analytic surface satisfying the 
definition as a fillet surface. Fig.6(c) shows results of recognizing fillet surfaces. 

Recognition of linear extrusion surfaces 
The linear extrusion surface is composed of a combination of some planes and 
cylinders. These surfaces must satisfy the following three conditions: (1) a plane 
normal and a cylinder axis must be orthogonal, (2) normal vectors of three or more 
planes must be coplanar, and (3) axes of two or more cylinders must be parallel. Our 
method recognizes a set of topologically connected analytic surfaces satisfying the 
above conditions as a linear extrusion surface. Fig.6(c) shows results of recognizing a 
linear extrusion surface. 

Recognition of surfaces of revolution 
The surface of revolution is composed a combination of planes, cylinders, spheres, 
cone, and tori. These surfaces must satisfy the following two conditions: (1) normal 
vectors of planes and axis directions must be parallel, and (2) center points of spheres 
and tori, apexes of cones, and arbitrary points of axes of cylinders must lie in a same 
line with a direction parallel to their normals or axis. Our method recognizes a set of 
topologically connected analytic surfaces satisfying the above conditions as a surface 
of revolution. Fig.6(c) also shows results of recognizing a surface of revolution. 
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(b) Analytic surfaces (c) Linear extrusion Surface(a) Solid Model (b) Analytic surfaces (c) Linear extrusion Surface(a) Solid Model (b) Analytic surfaces (c) Linear extrusion Surface(a) Solid Model  
Fig. 7. Results to our mesh model for verification 

(a) The automotive engine part (b) Analytic surfaces(a) The automotive engine part (b) Analytic surfaces(a) The automotive engine part (b) Analytic surfaces  

Fig. 8. Results to the mesh model created by CT scanning (974,754 tri) 

7   Results 

Fig.7 shows the results to a mesh model (300,000tri) for verification which was created 
by FEM meshing of a solid model. Then we added artificial noise on this model by 
moving the vertex position to its normal direction using a Gaussian distributed random 
value. Our method can extract regions from a noisy complex shaped model and can 
find accurate boundaries of underlying analytic surfaces.  

Fig.8 shows the results for the CT-scanned mesh model of an automotive engine 
part. It shows that our method could well extract planes and cylinders with relatively 
large areas from the model. Especially it could extract all functionally important 
cylindrical regions (fitted with bearings). The model has about 1,000,000 triangles 
and our method could extract analytic surfaces in less than 7 minutes. 

8   Conclusions and Future Works 

In this paper, we proposed a new method of systematically extracting analytic 
surfaces from a mesh model. From the simulation and the experiment for the various 
mesh models, we found that our method could produce an accurate and practical 
geometric model consisting of a set of analytic surfaces, fillet surfaces, linear 
extrusion surfaces and surfaces of revolution from mesh models.  
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One limitation of our method is that the thresholds to extract regions cannot be 
easily set by users. In our research, we experimentally found the appropriate values 
for all thresholds described in this paper, and they can work well for various mesh 
models.  

As for our future work, we need to impose geometric constraints among fitted 
surfaces (parallel, orthogonal, continuous, etc). Moreover, feature recognition such as 
boss, lib, slot, etc., will also be needed to use mesh models as we use feature-based 
solid models that are commonly used in the commercial 3D CAD systems. 
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