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Abstract. For effective application of laser or X-ray CT scanned mesh models
in design, analysis, and inspection etc, it is preferable that they are segmented
into desirable regions as a pre-processing. Engineering parts are commonly
covered with analytic surfaces, such as planes, cylinders, spheres, cones, and
tori. Therefore, the portions of the part’s boundary where each can be
represented by a type of analytic surface have to be extracted as regions from
the mesh model. In this paper, we propose a new mesh segmentation method for
this purpose. We use the mesh curvature estimation with sharp edge
recognition, and the non-iterative region growing to extract the regions. The
proposed mesh curvature estimation is robust for measurement noise.
Moreover, our proposed region growing enables to find more accurate
boundaries of underlying surfaces, and to classify extracted analytic surfaces
into higher-level classes of surfaces: fillet surface, linear extrusion surface and
surface of revolution than those in the existing methods.

1 Introduction

3D laser and X-ray CT scanning systems are widely used in the field of reverse
engineering to acquire scanned data of real-world objects. To use the acquired
scanned data in today’s digital engineering, it is easily converted into a 3D mesh
model by a surface reconstruction algorithm such as marching cubes [1]. When we
utilize 3D scanned mesh model for repairing, replication, analysis, or inspection of
engineering parts, we need to efficiently segment the mesh model into desirable
regions depending on its applications.

The surfaces of engineering parts mainly consist of a set of analytic surfaces, such
as planes, cylinders, spheres, cones, and tori. Therefore, we need to extract regions
each of which can be approximated by a simple analytic surface from a mesh model.
However, few methods have been proposed to extract analytic surfaces from a mesh
model. Moreover, in these methods, the accuracies of extracting regions from noisy
mesh models and the range of extracted analytic surface classes were not necessarily
sufficient from the aspect of practical engineering use.

The purpose of this research is to propose a new method that segments a scanned
mesh model into regions each of which can be approximated by a simple analytic
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surface. In this paper, we only deal with triangular mesh models whose surfaces are
completely composed of planes, cylinders, spheres, cones, and tori.

Our algorithm is composed of three steps. The first step accurately estimates mesh
principal curvatures based on a modified method of Razdan’s [2]. It allows robust
estimation for a noisy scanned mesh and ensures more accurate estimation even
around sharp edges where the previous methods generated large estimation error
(section 3). The second step extracts analytic surfaces based on the modified version
of Vieira’s region growing algorithm [3]. Our curvature estimation and limiting the
fitting surface only to the analytic enable to initially create large seed regions in the
region growing. This also enables non-iterative region growing and the efficient linear
LSM in analytic surface fitting (section 4). The final step classifies extracted analytic
surfaces into higher-level classes of surfaces than those in the existing methods
[4]1[5][6]: fillet surface, linear extrusion surface, and surface of revolution.

2 Related Works

Mesh segmentation is a technique that segments a mesh model into desirable regions
depending on applications, and many methods have been proposed for this
segmentation in computer graphics(CG)[7][8][9] and engineering field. These works
in CG are aiming at decomposing mesh surfaces into visually meaningful sub-meshes.
On the other hand, the goal of the segmentation in an engineering field aims at
decomposing the mesh surface into functionally meaningful surfaces. Therefore
segmentation in CG cannot be directly applied to the engineering purpose. The mesh
segmentation in the engineering field is roughly divided into following three groups:

The first group is to extract regions separated by sharp edges on a mesh model. In
this group, a watershed-based approach has been well studied [10][11][12]. However
they cannot extract regions separated by smooth edges (i.e., a region consisting of a
plane smoothly connected to a cylinder), and therefore cannot identify the surface
geometry of each segmented region.

The second group is to extract regions each of which can be approximated by a
simple free form surface. In this group, a region growing approach [3][13][14] has
been well studied. However the method did not focus on extracting regions
approximated by analytic surfaces and their geometric parameters.

The last group is to extract regions each of which can be approximated by a simple
analytic surface. Gelfand et al.[4] proposed a method based on eigenvalue analysis of a
mesh model. Wu et al.[S] proposed a method based on Lloyd’s clustering algorithm.
However, in their method, the range of extracted analytic surface classes was not
necessarily sufficient for engineering applications. Benkd et al.[6] proposed the direct
segmentation for reverse engineering of the engineering part. Their algorithm segments
a mesh model into regions each of which can be approximated by simple analytic
surfaces (planes, cylinders, spheres, cones, and tori), linear extrusion surfaces, and the
surface of revolutions. However this algorithm results in poor segmentation near
boundaries of surfaces where the indicators may not be properly estimated. And they
applied their segmentation only for a mesh model with very simple geometry.
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Fig. 1. Curvature estimation with sharp edges recognition

(a) Estimated maximum curvature (b) Estimated minimum curvature (c) Estimated maximum curvature
with sharp edges recognition with sharp edges recognition ~ without sharp edges recognition

Fig. 2. Results of curvature estimation

3 Robust Mesh Curvatures Estimation by Recognizing Sharp
Edges

To estimate mesh curvatures on a noisy meshes, Razdan proposed the method based
on a local biquadratic Bézier surface fitting [2]. This method locally fits the surface
for a mesh vertex and a set of vertices included in its 2-ring, and estimates mesh
curvatures at the vertex from the fitted surface. We simply modify this method, and
fits the surface for each vertex v, and a set of vertices directly connected to v; within
those which satisfy the condition of eq.(1),

v, =vi<w-i . @)
where [, is an average length of edge connecting to the vertex v;, and W is a
parameter to specify the size of surface-fit. Our algorithm analyses the fitted surface
and estimates two principal curvatures by the method [2] with the parameter 0=0.9.
Then we define the one whose absolute value is the larger as the maximum principal
curvature &; and the other one as the minimum principal curvature x; ;. .

i,max °

To robustly estimate principal curvatures on noisy scanned meshes, a parameter W
should be larger. However, a larger parameter setting results in poor curvature
estimation around sharp edges. To solve the problem, we propose the following “two-
pass” curvature estimations.
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In the first pass, principal curvatures are estimated by fitting the relatively small
surface on the mesh with W=2. If the maximum curvature «; . of the vertex is larger

1, max
than the user specified parameter th,,, the vertex is classified as a sharp vertex as
shown in Fig.1. This parameter setting is as the same as Vieira’s method [3].

In the second pass, principal curvatures are re-calculated for non-sharp vertices
with W=5. In this step, sharp vertices and neighboring vertices beyond them are not
included for the Bézier surface fitting as shown in Fig.1. This results in better
accuracy of principal curvatures of vertices near sharp edges as shown in Fig.2.

Moreover in our method, the normal vector n; for the vertex v; is also re-
calculated as the normal of the fitted Bézier surface. This normal vector is better in
accuracy than the one n; calculated using connected triangles for noisy mesh models.
The normal vectors n; are used for region growing described in section 5.2, and the re-
calculated normal vectors mn, are used for the analytic surface fitting described in

section 5.1.

4 Seed Region Creation

Next, seed regions are created on the surface of a mesh by classifying estimated
principal curvatures. In this paper, a seed region means a set of topologically
connected vertices that are supposed to be on a certain analytic surface. Our seed
region creation algorithm is composed of following four steps.

Step1: Allocation of labels for planes, cylinders/cones, and spheres

A label for plane, cylinder/cone, and sphere that discriminates on which surface the
vertex v; lies is allocated to it. Our method allocates the labels for non-sharp vertices
classified in sec.3 according to eq.(2) by evaluating two principal curvatures. Three
parameters &,&,,&;are used in eq.(2). Ideally, €,¢&,,&, are zero, however they may

not be zero due to scanning noise. We found that & =¢, = £ =0.01 roughly provided
good results for mesh models both with artificially-added and real-scanning noise.

1 (plane) I (| e | < €1
2 (cylinder,cone) else if (|K; | < &)
label(v,) = else if (K pux = Kimin| < & )
3 (sphere) ’ ’ ’
and K‘i,max : K‘[,min > 0)
0 (others) otherwise

Step2: Classification of cylinders/cones and smoothly connected cylinders

Step 1 allocates the label 2 for both cylinders and cones. In this step, these cylinders
and cones are discriminated. The smoothly connected cylinders are also separated into
different single cylinders. To achieve this, a similarity value of the principal
maximum curvature f(v,) is calculated for each vertex v, according to eq.(3).
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Table 1.Thresholds for seed region creation

@ :plane
surface  threshold @ :cylinder
type thseed
l @ :sphere
plane 2
cylinder 4 @ :cone
sphere 5 @ :torus
cone 4
torus 7

Fig. 3. Result of seed region creation

1
FOD = 3|0 = K ) K (3)

JeN (i)

where N **(i) is a set of vertices in 2-ring of the vertex v;. Ideally, f(v;) is zero in
cylinders and positive value in cones. Therefore if f(v;) is larger than the
threshold th the vertex is assumed to belong to a cone, and label(v;) is changed

cyl _cone
to 4 and if f(v;) is smaller than the threshold, label(v;) is preserved. For our
implementation, th =0.01- 0.4 provides a good result.

eyl _cone

Step3: Allocation of labels for tori

Previous two steps allocate labels for plane, cylinder, sphere, and cone, therefore most
of vertices with label 0 are assumed to lie on tori. To allocate torus labels to such
vertices, principal curvatures of vertices that have label 0 are evaluated.

A torus is the excursion surface where a sphere is rotated along an axis. Therefore
one of the principal curvatures corresponds to the constant curvature of the radius r
of the sphere. We use this property and create a histogram of discretized principal
curvatures for a set of vertices that have the label 0. If the number of vertices that has
a particular discretized curvature value is larger than the threshold th label 5 is

allocated to their vertices. In our implementation, 0.01 for the step of principle
curvature, and 0.1-0.5% of the number of all vertices for th,,, provided good results

torus

for most mesh models.

Step4: Creation of seed regions
Finally, a seed region is created as a set of topologically connected vertices with the
same label that has the number of vertices larger than the threshold th,,, shown in

see

tablel. In our implementation, th_,, corresponds to the minimum number of vertices

which enables the least square analytic surface fitting that is proposed in this paper
and is described in section 5.1. Fig.3 shows the results of seed region creation.

5 Analytic Surface Extraction

5.1 Analytic Surfaces Fitting to Seed Regions

In this paper, we propose the following efficient analytic surface fitting where we
only need to solve the linear least squares problems to find fitted analytic surfaces
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instead of the non-linear one by utilizing pre-computed normal vectors n; . Our

method is less accurate than previous non-linear methods [15][16][17], but faster than
them, and provides a practically enough results for analytic surface extraction.

Plane fitting: A plane is defined by its unit normal vectorn=(n,n n ) and a

distance d from an origin. Our method calculates n as the normalized average
vector of vertex normals n; in a seed region of the plane. Then the distance d is
calculated using linear least squares sense.

Cylinder fitting: A cylinder is defined by its unit axis direction vector
d= (dx,dy,dz) , radius r, and an arbitrary point on the axis p=(p,, Py p.) . First,

all of vertex normals n; in a seed region are mapped onto a Gaussian sphere. Then a

least square plane is fitted so that the plane passes through the end points of n’ in the

sphere. The axis direction is derived as a unit normal vector of this plane. Next, all
vertices in a seed region are projected onto the plane whose normal vector isd . Then,
a circle is fitted to these projected points on the plane in the least squares sense, and
the radius r is calculated as the radius of the fitted circle. Finally, the center of the
circle is also calculated on the projected plane, and it can be easily transformed top .

Sphere fitting: A sphere is defined by its center ¢=(c,,c,,c,) and radius r. Our

method solves a linear least squares problem to find the coefficients (A, B,C,D)

defining the sphere of the implicit form x* + y* +z*> + Ax+ By+Cz+D =0 . They are
easily converted into the center ¢ and radius r .
Cone fitting: A cone is defined by its unit axis direction vector d =(dx,dy,dz),

apex a=(a,,a a_ ), and vertical angle 6. The unit axis direction vector d is

calculated using the same method as for a cylinder. An apex a is given from the
condition that a vector passing through a and v, is orthogonal to a normal vector of

the vertex n; . This is obtained by finding a least squares solution of a in
n,-(a—v,)=0. An apex 8 is calculated as the average of angles between d and a
vertex normal n; .

Torus Fitting: A torus is defined by its unit axis direction vector d=(d,.d .d_), its
center ¢ =(c,,c,,c,), the radius of its body r, and the radius of the centerline of the

torus body R . First, to calculate d and an arbitrary point p on the axis, we use the
same method as Koés er al.[15]. Kés first calculated the initial estimates of d and p
using the generalized eigen analysis, and then the precise solutions of them are
calculated by the iterative method from these initial estimates. We first use Kdés’s
initial estimates as our final solutions of d and p for fitting torus. Next, all vertices in a
seed region are rotated around the calculated axis so as to be placed onto a plane which
includes the calculated axis. Then a circle is fitted to the points on the plane in the least
squares sense. The radius r is calculated as the radius of that circle. The center c¢ is
calculated according to the condition that the vector toward the center of the torus ¢
from the center of the circle is orthogonal to the torus axis. The radius R is also
calculated as the length between the center of the torus and the center of the circle.
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Fig. 4. Results of extracted analytic surfaces using the region growing

5.2 Extraction of Analytic Surfaces Based on Region Growing

Next, our region growing method makes a set of vertices topologically connected to
the seed region added to the original seed region if the vertex lies on the fitted surface
within a specified tolerance. Therefore our algorithm first calculates the positional
error between the mesh vertex v; and the point p(v;) on the analytic surface which is
the projection of v; to the surface along n;, and the directional error of the normal
vectors between them. If the vertex is adjacent to the seed region and satisfies the
compatibility in eq.(4) and eq.(5), it is added to the seed region.

|Vi _p(vi)| < thpos : lavg (4)
[cos™ (n, =n(p(v, ) < h,,,, ®)

where [, is an average length of all mesh edges. th,,, and th,,,, are the thresholds
of positional and directional errors, and we found in the experiments that 4, = 0.5

and th,,, =8.0[deg] provided good results for mesh models measured from CT
scanning.

This region growing is done for the seed region in the descending order of the
number of vertices in the region. This enables to generate a small number of larger
regions. If all the vertices adjacent to the region do not satisfy eq.(4) or eq.(5), the
region growing stops. The region can be extracted as a set of topologically connected
vertices that are approximated by a particular analytic surface. Fig.4 shows the result

of analytic surfaces extraction.

6 Recognition of Fillet Surfaces, Linear Extrusion Surfaces, and
Surfaces of Revolution

For the effective use of a mesh model in various mesh applications, our method
recognizes fillet surfaces, linear extrusion surfaces, and surfaces of revolutions which
are often included in most engineering parts from a mesh model.

Recognition of fillet surfaces
We assume that all surfaces in a mesh model are covered with analytical surfaces, and
fillet surfaces are also represented by them. This assumption enables to classify fillet
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A torus-type A cylinder-type A sphere/torus-type
between two surfaces between two planes between three cylinder-type fillets

n, idc
Recognized
fillets [r ’

Neighboring| A cylinder

surfaces and a plane A sphere and a plane Two planes Three cylinder-type filletes

. Sphere-type:
Geometric 0 d d 1) p.lie on the torus | 1) p pnLd.andn, 1d, only convex or concave are connected
P t c

conditions axis 2) 0°<9<180° Torus-type:
2)n,//d, convex and concave are connected

Fig. 5. Definition of fillet surfaces

Fig .6. (a)(b)Recognitionof fillet surfaces, (c)alinear extrusion surface(red) and surfaces of
revolution(blue)

surfaces into three types: cylinders, spheres, and tori [18]. These surfaces can be
defined based on their geometric parameters and combinations of neighboring
surfaces as shown in Fig.5. Our method recognizes the analytic surface satisfying the
definition as a fillet surface. Fig.6(c) shows results of recognizing fillet surfaces.

Recognition of linear extrusion surfaces

The linear extrusion surface is composed of a combination of some planes and
cylinders. These surfaces must satisfy the following three conditions: (1) a plane
normal and a cylinder axis must be orthogonal, (2) normal vectors of three or more
planes must be coplanar, and (3) axes of two or more cylinders must be parallel. Our
method recognizes a set of topologically connected analytic surfaces satisfying the
above conditions as a linear extrusion surface. Fig.6(c) shows results of recognizing a
linear extrusion surface.

Recognition of surfaces of revolution

The surface of revolution is composed a combination of planes, cylinders, spheres,
cone, and tori. These surfaces must satisfy the following two conditions: (1) normal
vectors of planes and axis directions must be parallel, and (2) center points of spheres
and tori, apexes of cones, and arbitrary points of axes of cylinders must lie in a same
line with a direction parallel to their normals or axis. Our method recognizes a set of
topologically connected analytic surfaces satisfying the above conditions as a surface
of revolution. Fig.6(c) also shows results of recognizing a surface of revolution.
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(a) Solid Model (b) Analytic surfaces (c) Linear extrusion Surface

Fig. 7. Results to our mesh model for verification

(a) The automotive engine part (b) Analytic surfaces

Fig. 8. Results to the mesh model created by CT scanning (974,754 tri)

7 Results

Fig.7 shows the results to a mesh model (300,000tri) for verification which was created
by FEM meshing of a solid model. Then we added artificial noise on this model by
moving the vertex position to its normal direction using a Gaussian distributed random
value. Our method can extract regions from a noisy complex shaped model and can
find accurate boundaries of underlying analytic surfaces.

Fig.8 shows the results for the CT-scanned mesh model of an automotive engine
part. It shows that our method could well extract planes and cylinders with relatively
large areas from the model. Especially it could extract all functionally important
cylindrical regions (fitted with bearings). The model has about 1,000,000 triangles
and our method could extract analytic surfaces in less than 7 minutes.

8 Conclusions and Future Works

In this paper, we proposed a new method of systematically extracting analytic
surfaces from a mesh model. From the simulation and the experiment for the various
mesh models, we found that our method could produce an accurate and practical
geometric model consisting of a set of analytic surfaces, fillet surfaces, linear
extrusion surfaces and surfaces of revolution from mesh models.
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One limitation of our method is that the thresholds to extract regions cannot be
easily set by users. In our research, we experimentally found the appropriate values
for all thresholds described in this paper, and they can work well for various mesh
models.

As for our future work, we need to impose geometric constraints among fitted
surfaces (parallel, orthogonal, continuous, etc). Moreover, feature recognition such as
boss, lib, slot, etc., will also be needed to use mesh models as we use feature-based
solid models that are commonly used in the commercial 3D CAD systems.
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