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Object-oriented Design Patterns for Parallel Discrete Event Simulation of Distributed Control Systems

Toyoaki TOMURA and Satoshi KANAI

Distributed control systems (DCS) consist of many sensors/actuators and a network interconnecting them, and are being

introduced in various automation areas. For assuring the control performance of a DCS under heavy communication traffic, the

precise simulation of the DCS is strongly needed. For this purpose, we propose a uniform, efficient and systematic method based on

object-oriented design patterns for modeling and simulating DCSs. In this paper, two design patterns are newly proposed;

Time-Warp pattern and Protocol pattern. Time-Warp pattern describes classes and interaction for executing the DCS simulation by

communicating events having send/receive times, using Time Warp mechanism. Protocol pattern describes classes and interaction

for uniformly structuring various communication protocol models used in DCSs, which are composed of the interactions among

several layers and the state transition of each layer in a communication protocol. Finally, the effectiveness of the DCS simulator

which is developed using these patterns was proved by comparing simulation results with the experiment results using the real DCS

consisting of four CAN-based control nodes.
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Fig.2 DCS modeling and simulation methodology using design patterns
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Fig.3 UML class diagram of Time-Warp pattern
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Normal Event Processing
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An Instance of TimeWarpModel Class
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Fig4 Event processing and rollback processing in Time-Warp pattern
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Table 1 Send and receive delays of CAN controller
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Fig.8 Communication scenario among four CAN control nodes

Table 2 Comparison of experiment and simulation results
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