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Distributed control systems (DCS) consist of many sensors/actuators and a network interconnecting them, and are being 
introduced in various automation areas. For assuring the control performance of a DCS under heavy communication traffic, the 
precise simulation of the DCS is strongly needed. For this purpose, we propose a uniform, efficient and systematic method based on 
object-oriented design patterns for modeling and simulating DCSs. In this paper, two design patterns are newly proposed; 
Time-Warp pattern and Protocol pattern. Time-Warp pattern describes classes and interaction for executing the DCS simulation by 
communicating events having send/receive times, using Time Warp mechanism. Protocol pattern describes classes and interaction 
for uniformly structuring various communication protocol models used in DCSs, which are composed of the interactions among 
several layers and the state transition of each layer in a communication protocol. Finally, the effectiveness of the DCS simulator 
which is developed using these patterns was proved by comparing simulation results with the experiment results using the real DCS 
consisting of four CAN-based control nodes. 
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1. 緒   言 

近年，集中管理方式の制御システムに代わり，通信ネットワ

ークを介してセンサやアクチュエータ等の計装機器同士が直接

ディジタル通信する分散制御システム（Distributed Control 
System, DCS）が，FA，BA（ビルオートメーション），車載 LAN 
等の分野へ急速に普及している 1) 2)． 
一般的な DCS は，図 1 のようにセンサ・アクチュエータ等の

「デバイスコンポーネント」，センサ信号の収集・アクチュエー

タの制御・ネットワーク経由の通信を行う「制御ノード」，1 台

の制御ノードと複数のデバイスコンポーネントからなる「デバ

イス」，制御ノード間を接続するネットワークから構成される． 
DCS は物理的通信路が 1 本のため，制御ノード間の通信遅れ

やデータ損失が生じやすくなる．通常この現象の有無を調べる

のはシステムの設置後であり，原因究明と対策に多くの時間・

費用が必要とされる． 
そのため，システムの設置前に DCS の挙動を予測し，機能

検証が行える DCS シミュレータが，システム設計者から強く

望まれている．このシミュレータ開発を効率的に進めるには，

1) DCS を構成するさまざまなデバイスの構造を表現できる 
DCS モデルを効率的に記述できる事，2) デバイス内部の挙動

とデバイス間の通信挙動を 1) のモデルと関連付けて記述でき

る事，3) これらのモデルを特定のプログラミング言語上へ容易

に実装できる事，という 3 条件を満たすシステムモデリング手

法が必要となる． 
オブジェクト指向モデリング手法は，DCS のような複雑な構

造・挙動を持つシステムのモデリングに適した一手法である．

本研究は，デザインパターン 3) と呼ばれる再利用可能なオブジ

ェクト指向ソフトウェア設計技法を用いて，上記の要求条件を 
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Fig.1 Typical Structure of DCS 

 
満たすために，DCS の静的構造と動的挙動を高精度にモデリン

グし，このモデルをプログラミング言語上へ体系的に効率良く

実装する手法の提案を目的としている．前々報 4) では，上記 1)，
3) を満たすパターンとして，デバイス・コンポジットデバイス

モデルの構造を規定するDevice-Constructorパターン・Composite- 
Device-Constructor パターンをそれぞれ提案した．また前報 5) で

は，上記 2)，3) を満たすパターンとして，階層型有限状態機

械として記述される制御ノード・デバイスコンポーネントモデ

ルの挙動を規定する Statechart パターン，デバイスモデル内と

デバイス間のイベント通信経路を規定する Event-Chain パター

ンを提案した．さらに前報では，これらのパターンを LonWorks 

6) を通信ネットワークとした DCS のシミュレータ開発に適用

し，その通信特性を高精度に予測できる事を確認してきた． 
実際には，DCS では応用分野別に，多様な通信プロトコルを

持つネットワークが使われている．LonWorks 以外にも自動車

内制御用の CAN 7)，FA 制御用の ControlNet 8) 等の規格が利用

されている．しかし，これらの DCS は通信プロトコルの差こ

そあれ，基本的構造は図 1 に類似しており，かつ，構成機器の

挙動は有限状態機械として記述できるものも多いため，モデリ

ングとシミュレーションの共通化を図れる可能性がある． 
しかし，前報までに報告した LonWorks 専用の DCS シミュ

レータの機能を，さらにこれら他規格の通信ネットワークにも

対応できるように汎用性を高めるためには，以下の問題点を解

決する必要がある． 
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Fig.2  DCS modeling and simulation methodology using design patterns 

 
(1) DCS のシミュレーションは，基本的にネットワークの形

態によらず，ネットワークに接続されたモデル構成要素

単位の間でイベント通信を行いながら，これらの要素が

時間的に同期を取り，状態を変化させてゆくシミュレー

ションモデルを持つ．このシミュレーションモデルは，

ネットワーク形態によらず DCS 全体に共通であるにも

かかわらず，前報までの開発方法では，プロトコルが変

わると，シミュレーション機構も各プロトコルに合わせ

て新たに実装しなければならなかった． 
(2) LonWorks 以外の通信プロトコルのシミュレーションを

実現するためには，そのプロトコルで規定される再送信

サービスやバス調停といったメカニズムや，ネットワー

ク上を伝送されるフレームの構造を新たにモデリング

し，シミュレータへ新たに実装する必要がある． 
これらの問題点を解決し，DCS のネットワーク通信プロトコ

ル形式から独立した，汎用的な DCS シミュレータ開発を実現

するための方法論の提案を行う事が，本研究の目的である．こ

の目的実現のため，具体的に以下の事項を本論文で述べる． 
(1) DCS モデルにおける制御ノード・センサ・アクチュエー

タ・制御対象モデルが，送信・受信時刻を持つイベント

を通信する事によって論理上並列に動作し，かつ大域的

に同期するシミュレーション機構を，ネットワーク通信

プロトコルによらず統一的に規定するデザインパター

ンとして，Time-Warp パターンを新たに提案する． 
(2) DCS におけるネットワークの通信プロトコルモデルの

一般的な静的構造（プロトコルレイヤとそれらの間のデ

ータフロー）および動的挙動（各レイヤにおける送信サ

ービスやパケット作成機能等）を規定するためのデザイ

ンパターンとして，Protocol パターンを新たに提案する． 
(3) (2) のパターンから，通信プロトコルモデルの実行可能

Java コードへ変換するための，システマチックな実装手

続きを提案する． 

(4) 提案するパターンと実装手続きを DCS シミュレータへ

組み込んで，車載 LAN を想定した，CAN をネットワ

ークとする DCS 用のシミュレータを開発し，シミュレ

ーション結果と実機による通信実験結果とを比較する

事により，上記 (1)，(2)，(3) の有効性を確認する． 

2. デザインパターンに基づく DCS シミュレーション手法 

本研究で提案するデザインパターンを利用した DCS モデラ

と DCS シミュレータの構造を図 2 に示す．ここで，本論文で

提案する 2 つのデザインパターンの目的を以下に示す． 
(a) Time-Warp パターン : Statechart として記述された動的

挙動を持つモデル（制御ノード・センサ・アクチュエー

タ・制御対象等のモデル）間で，送信・受信時刻を持つ

イベントを通信し，それぞれ固有の時計の時刻を進める

事により，その結果大域的に同期するシミュレーション

機構を規定する． 
(b) Protocol パターン : デバイスモデルにおける通信プロ

トコルモデルとネットワークの構造と挙動を規定する． 
前々報 4) では，DCS モデルの静的構造を規定するデザインパター

ンとして，Device-Constructorパターン，Composite-Device-Constructor 
パターンを既に提案している．これらは図 2 のモデリングプロ

セス①，③，④において利用される．また前報 5) では，DCS モ
デルの動的挙動を規定するデザインパターンとして，Statechart
パターン，Event-Chain パターンを既に提案している．これら

は図 2 のモデリングプロセス②，⑦，⑧において利用される．

一方，本報で新たに提案する Time-Warp パターン，Protocol パ
ターンは，図 2 のモデリングプロセス⑤，シミュレーション実

行時⑧において以下のように利用される． 
(1) モデリング対象となる通信プロトコルの仕様書を参照

し，Protocol パターンを構成する各クラスの具象クラス

を CASE ツール上で新たに定義し，これらの具象クラス

とそのメソッドを Java 言語で実装する．これにより， 
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Fig.3  UML class diagram of Time-Warp pattern 

 
ある特定のネットワーク規格に対応する通信プロトコ

ルモデルとネットワークの動作シミュレーションモデ

ルが定義される（図 2 ⑤）． 
(2) 各デバイスモデルに対し，(1) で定義・実装された通信

プロトコルモデルのインスタンスを 1 つずつ生成・接続

し，これらのインスタンスを 1 つのネットワークモデル

へ接続する．次に，各インスタンスの通信パラメータ（例

えば，通信速度やメッセージ ID など）を設定し，DCS シ
ミュレーションを開始する．その結果，パケットのログ，

パケットの数，パケットの衝突回数等が出力され，DCS 
設計者は，DCS の制御性能を評価できる（図 2 ⑧）． 

3. Time-Warp パターン 

3.1 並列離散事象シミュレーション機構に対する要求条件 
まず，本研究で求められている DCS シミュレーションを論

理的に並列に実行するためのデザインパターンについての要求

条件を明らかにする． 
並列離散事象シミュレーション（Parallel Discrete Event 

Simulation, PDES）とは，離散的に生起するイベントによって状 
態遷移するシミュレーションモデルを複数のサブモデルへ分割

して，それらを並列計算機の処理要素へ割り当てる事により，

効率的にシミュレーションを実行する仕組みである 9)．PDES 
では，サブモデルごとに固有の仮想時刻（シミュレーション時

刻）を管理する分散時刻管理機構を用いるのが一般的である．

シミュレーションを進行させるには，これらの仮想時刻を大域

的に同期させる必要があり，そのために保守的または楽観的な

時刻同期手法を実装する必要がある． 
各サブモデルでイベント間の発生時刻の順序関係に誤りが生

じない事を確認しながら実行する保守的手法として，デッドロ

ックを回避できる Null Message 法 10)，同期法 11) 等が提案され

ているが，モデリング対象によっては，処理要素におけるイベ

ントの待ち行列でボトルネックが発生してしまい，サブモデル

の仮想時刻を効率的に前進できないという問題点がある． 
一方，サブモデルごとに局所仮想時刻（Local Virtual Time, 

LVT）を非同期に進めて，あるサブモデルにおいてイベント間

の順序関係に誤りが生じたら，その仮想時刻と局所状態を巻き

戻す事によって大域的に同期させる楽観的手法として，Time 
Warp 法 12) 13) が提案されている．Time Warp 法は，巻き戻し処

理が雪崩的に発生しなければ保守的手法よりも効率的に PDES 

を実行できるという利点を持つ．さらに，Time Warp 法におけ

る大域的な同期処理は，各サブモデルにおけるイベント処理の

呼出と不要なイベントと局所状態の調査・破棄（化石回収）の 
みで良いため，並列計算機から PC まで各種コンピュータ上へ

シミュレーション機構を容易に実装できるという利点を持つ． 
このTime Warp法をDCSシミュレーションへ適用するために

は，以下の条件を満たす PDES 実行用のパターンが必要となる． 
(1) 制御ノード・センサ・アクチュエータ・制御対象モデル

がイベント処理により状態遷移する時，各々が LVT を
前進させた後，巻き戻しに備えて各々が現在の局所状態

を保存できる事． 
(2) (1) のモデルにおいて，到着したイベント間の順序関係

に誤りが生じた場合，過去に送信したメッセージの効果

を取り消し，かつ LVT と局所状態をその前時刻まで巻

き戻せる事． 
上述した条件を満たすデザインパターンとして，本研究では 

Time-Warp パターンを新たに提案する． 
3.2 Time-Warp パターンの構造 
Time-Warp パターンの UML クラス図を図3に示す．ここで，

図 3 における各クラスの機能を以下に示す． 
・ TimeWarpModel : 外部からイベントを受信すると，LVT 

の時刻を前進させ，別のイベントを外部へ送信するモデル

の抽象クラス．本研究では，これの具象クラスとして，

Statechart として記述された挙動を持つ制御ノード・セン

サ・アクチュエータ等のモデルを表すクラスを定義する． 
・ LocalState : TimeWarpModel オブジェクトの局所状態を表

す具象クラス．このクラスのオブジェクトの生成時点での 
LVT を属性として持つ． 

・ AntimessageQueue : 過去に送信したイベントを取り消す

ためのイベントを，巻き戻しに備えて仮想送信時刻の順に

格納する待ち行列の具象クラス． 
・ LocalStateStack : 外部からのイベントを処理する時刻での，

制御ノード・センサ・アクチュエータなどの局所状態を，

LVT の順に格納するスタックの具象クラス． 
・ MessageBuffer : TimeWarpModel オブジェクトに到着したイ

ベントを仮想受信時刻順に格納するバッファの具象クラス． 
Time-Warp パターンを構成しているこれらのクラスが持つ

メソッドを以下のように呼び出す事で，3.1 節で述べた条件を

満たす並列離散事象シミュレーションを実行できるようになる． 
(1) TimeWarpModel オブジェクトは，到着したイベントを受

信する時，自身の LVT をそのイベントの仮想受信時刻

へ更新した後，LocalState オブジェクトを 1 つ生成して，

それを LocalStateStack オブジェクトへプッシュする． 
(2) MessageBuffer オブジェクトにおいて到着したイベント

間の順序関係に誤りが生じると，TimeWarpModel オブジ

ェクトは，誤り発生の原因となったイベントの仮想受信

時刻よりも以前に保存された LocalState オブジェクトを

ポップし，そのオブジェクトが保持する LVT へ自身の

LVT を更新する．その後，更新後の LVT 以降に送信した

イベントの効果を取り消すイベントをAntimessageQueue
オブジェクトから取り出して外部へ送信する． 

3.3 Time-Warp パターンによる並列離散事象シミュレーション 
TimeWarpModel クラスの processMessage() メソッドを呼び

出すと，並列離散事象モデルは下記のイベント処理を実行する． 
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(5) The LVT equals to the receive time of
     a message Mrollback which occured error.

 
Fig.4  Event processing and rollback processing in Time-Warp pattern 

 
(1) はじめに，rollbacked 属性が真ならば巻き戻し処理を実

行するために (7) へ進み，一方，偽ならば (2) へ進む． 
(2) 所有する全 MessageSocket オブジェクトから，最小仮想

受信時刻を持つメッセージ Mcurrentを得，これをパラメー

タとし receiveCurrent()メソッドを呼び出し，(3) へ進む． 
(3) 図 4 (1) のように，自身の cycleTime 属性，receiveDelay

属性，Mcurrent の receiveTime 属性を基に Mcurrent 受信後の

LVT を計算・更新し，自身の saveLocalState() メソッド

を呼び出して，(4) へ進む． 
(4) 図 4 (2) のように，LocalState オブジェクトを 1 つ作り，

これをパラメータとして LocalStateStack オブジェクト

の push() メソッドを呼び出す事により局所状態を保存

した後，自身の sendBufferedMessages() メソッドを呼び

出して，(5) へ進む． 
(5) TimeWarpModel クラスのサブクラスは，図 4 (3) のよう

に，自身の LVT と sendDelay 属性を基に仮想送信時刻

を計算し，その時刻を持つ具体的メッセージ Msend を内

部バッファへ格納してから，(6) へ進む． 
(6) 図 4 (4) のように，Msend を MessageSocket オブジェクト

へ送信すると共に，Msend のアンチメッセージ Asend をパ

ラメータとして  AntimessegeQueue オブジェクトの 

enqueue() メソッドを呼び出し，Asend を保存し終了する．  
(7) 図 4 (5) のように，自身の LVT は誤りを発生させたイ

ベントの仮想受信時刻 terror に等しい．巻き戻し処理を

開始するために，(8) へ進む． 
(8) 図 4 (6) のように，terror をパラメータとして自身の

loadLocalState()メソッドを呼び出す事により，terror 以前

の LVT と局所状態へ巻き戻した後，(9) へ進む． 
(9) 図 4 (7) のように，自身の sendAntimessages()メソッドを

呼び出す事により，巻き戻し後の LVT 以降に送信され

た全イベントに対応するアンチメッセージを送信する． 
以上により，制御ノード・センサ・アクチュエータなどから

なるDCSのTime Warp法を用いた PDES の実行が可能となる． 

4. Protocol パターン 

4.1 通信プロトコルモデリングに対する要求条件 
本節では，通信プロトコルモデルの記述において，新たに提

案すべきデザインパターンに対する要求条件を明らかにする． 
通信プロトコルは，一般的に複数の階層（プロトコルレイヤ）

から構成される．例えば，FA・BA で普及している LonWorks 6) 

は，OSI 参照モデルの 7 階層全てを規定している，一方，車載

LAN 分野で普及している CAN（Controller Area Network）7) で

は，データリンク層と物理層のみを規定している． 
従来の非商用ネットワークシミュレータ 14) 15) 16) は，通信プロ

トコルを TCP/IP またはその関連プロトコルへ限定するものが

多く，その場合，これら以外のプロトコルを利用するためには，

C/C++言語等によるハードコーディングが必要となる．一方，

一部の商用ネットワークシミュレータ 17) 18) は，モジュール化さ

れた多種の通信プロトコルを利用できるものの，DCS の制御ノ

ードから下の階層のモデル（例えば，センサ・アクチュエータ

のモデルなど）の挙動記述に関して機能的に不充分である． 
そこで本研究では，複数のプロトコルレイヤから構成される

制御ノード内の通信プロトコルの挙動と，ネットワーク上での

フレーム通信の挙動を汎用的に記述し，模擬できるデザインパ

ターンが必要となる． 
4.2 Protocol パターンの構造 
4.1 節で述べた要求条件を満たすデザインパターンとして，

本研究では Protocol パターンを新たに提案する．このパターン

の UML クラス図を図 5 に示す．ここで，図 5 における各クラ

スの機能を以下に記す． 
・ Protocol : 1つのコントローラと1つのトランシーバからな

る通信プロトコルの抽象クラス． 
・ NetworkController : 複数のプロトコルレイヤから構成さ

れるコントローラの抽象クラス． 
・ NetworkTransceiver : ネットワークへフレームを送信する

トランシーバの抽象クラス． 
・ ProtocolLayer : ネットワークへフレームを送信または受

信するプロトコルレイヤの抽象クラス． 
・ Network : トランシーバから送信されたフレームを他のト

ランシーバへ伝送するネットワークの抽象クラス． 
・ NetworkFrame : トランシーバから送信されるフレームの

抽象クラス．Message クラスのサブクラスである． 
この Protocol パターンは，以下に示すクラス間の相互作用を

実現するメカニズムを適用する事により，4.1 節で述べた要求

条件を満たす事ができる． 
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Fig.5 UML class diagram of Protocol pattern 

 
(a) ProtocolLayer オブジェクトは MessageSocket オブジェ

クトを介して，他の ProtocolLayer オブジェクトや 
Device オブジェクトとのイベント通信が可能である． 

(b) 4.3 節で述べる実装手続きを用いて ProtocolLayer クラ

スの具象クラスを定義し，そのメソッド内へ通信プロト

コルで規定されている機能を実装するだけで，特定の通

信プロトコル挙動を精密にシミュレーションできる． 
4.3 Protocol パターンを用いた通信プロトコルモデル実装手続き 
CAN 通信プロトコルを具体例として，Protocol パターンを用

いて通信プロトコルモデルを実装する手続きについて述べる．

この実装手続きは DCS 設計者によって下記のように行われる． 
(1) 通信プロトコル仕様におけるデータ通信用フレームの

構造を参照する事により，NetworkFrame の具象クラス

（CANDataFrame）を定義する．この具象クラスの属性

はフレームを構成する各種のビット列である． 
(2) 通信プロトコル仕様におけるプロトコルレイヤの構造

を参照する事により，ProtocolLayer の具象クラス（CAN 
DataLinkLayer）を定義する．この具象クラスでは，受信

した Message オブジェクトの種類に応じて，別種の 
Message オブジェクトを送信する方向を決定するため

に receiveCurrent() メソッドをオーバーライドする．さら

に，上位または下位のレイヤへ別種の Message オブジ

ェクトを実際に送信する  sendToLower() メソッドと 
sendToUpper() メソッドもオーバーライドする． 

(3) NetworkController の具象クラス（CANController）を定義

し，そのコンストラクタにおいて，上記 (2) で定義した

具象クラスのオブジェクトの生成手続きを実装する． 
(4) NetworkTransceiver の具象クラス（CANTransceiver）を定

義し，上記 (1) で定義した具象クラスのオブジェクトを

受信し，そのクローンをネットワーク方向へ送信するた

めに receiveCurrent() メソッドをオーバーライドする． 
(5) Protocol の  processMessage() メ ソ ッ ド は  Network 

Controller・NetworkTransceiver の順に processMessage() 
メソッドを呼び出すので，CANProtocol でのメソッドの

オーバーライドは不要である． 
(6) NetworkController の具象クラスとして  CANController 

を定義する．NetworkController の processMessage() メソ

ッドは ProtocolLayer の processMessage() メソッドを呼

び出すので，CANController でのメソッドのオーバーラ

イドは不要である． 
(7) NetworkFrame の具象クラスとして CANDataFrame を 

CAN Controller

CAN Transceiver

ProcessorH8S/
2612F

I/O
 P

or
t

Sender
Node

LIN CAN Starter Kit

Tc-send Tc-receive

Tt-send Tt-receive

CAN Controller

CAN Transceiver

ProcessorH8S/
2612F

I/O
 P

or
t

Receiver
Node

LIN CAN Starter Kit

Tc-send Tc-receive

Tt-send Tt-receive

(1) (2)

(3)

(4) (5) (6)

(7)

(8) (9)

Logic Analyzer
(Sampling Rate = 0.1μs)

1.5m 1.5m
3m (Bit Rate = 250kbps)

 
Fig.6  The measurement equipment of send and receive delays of CAN node 
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Fig.7  Communication timing between CAN nodes in Fig.5 

 
定義する． 

5. 通信実験とシミュレーションの結果の相関性検証 

以上の節で提案したデザインパターンの有効性を確認するた

め，本節では車載用制御システムのデファクトとなっている

CAN バスで制御される DCS を対象に検証を行った．CAN バ

ス制御の DCS では，一般に高速な応答が求められる事が多く，

異なる制御ノード間での通信時における通信時間遅れの定量的

予測が重要となる．通信時間遅れは，CAN 用制御ノード内部で

の送信・受信処理自体に要する時間，バス上をメッセージが通

過する時間，さらに複数ノードの送信が衝突した場合，プロト

コルにしたがってメッセージが送信待ちとなる時間の総和とし

て表される．このうち，バス上をメッセージが通過する時間は

微少であるため，制御ノード内部での送信・受信処理時間の一

部に含めて考えることができる．本 DCS シミュレータで通信

遅れ時間を定量予測するには，制御ノード内部で送・受信処理

にかかる時間を定量予測するモデルが必要であり，一方，送信

衝突による待ち時間については，これらの予測時間から提案し

た Protocol パターンを使って自動的に計算が可能である． 
そこで本研究では，まず 2 台の CAN 制御ノード実機を接続

した予備通信実験により，CAN 用制御ノード内部での実際の

送受信処理時間と，バス上のメッセージ通過時間を精密に測定

し，制御ノード内部での処理時間の定量予測モデルを構築した．

さらに，この予測モデルを本 DCS シミュレータ内に組み込み，

3 台以上のノード間で複雑なメッセージ通信を行なわせた際の

通信時間遅れを予測させ，これを実機の時間遅れと比較検証し，

デザインパターンの検証を行った． 
5.1 予備通信実験 
図 6 のように，2 台の CAN 制御ノード（北斗電子製 LIN・

CAN スタータキット）を接続し，制御ノード内部の送信・受信

処理自体に要する時間を，ロジックアナライザを用いて実測す

る予備通信実験を行った．本実験では，図 7 のように，CPU が
測定開始用ビット信号を出力してから CAN コントローラが 
 



Table 1  Send and receive delays of CAN controller 
0 1 2 3 4 5 6 7 8

T1  [μs]

T4  [μs]

 [byte]

188.8 232.2 264.8 300.6 336.4 372.8 408.6 452.8 488.4

47.68 47.68 47.68 47.66 47.6647.68 47.66 47.6647.70

 
 
フレーム送信を開始するまでの時間 T1，フレームが CAN トラ

ンシーバによって送信開始されてから CAN バスの中間点に

達するまでの時間 T2，フレームが CAN バスの中間点から 
CAN トランシーバによって受信受信開始されるまでの時間 T3，

CAN コントローラがフレーム受信を開始してから CPU がビ

ット信号を出力するまでの時間を T4 測定した．これらの測定

値から，制御ノードにおける CAN コントローラでの送信・受

信所要時間 Tc-send・Tc-receive，CAN トランシーバでの送信・受信 
所要時間 Tt-send・Tt-receive へは，(1)式～(4)式により変換が行える． 
  Tc-send = T1 + 0.05 [μs] ............................................................. (1) 
  Tt-send = T2 – 0.0075 [μs] .......................................................... (2) 
  Tt-receive = T3 – 0.0075 [μs] ........................................................ (3) 
  Tc-receive = T4 – 0.05 [μs] ........................................................... (4) 
ここで，0.05μs は CPU がビット信号出力関数を呼び出すのに

要する時間，0.0075 μs は CAN バス上でフレームを 1.5m 伝送

するのに要する時間である． 
5.2 CAN 制御ノード内部での送信・受信処理時間の予測 
モデル構築 
Tt-send，Tt-receive は通信データ長に依存しないという仮定の下で，

0.01μs の測定分解能で CAN トランシーバの T2，T3 を各々 
10 回ずつロジックアナライザで測定した結果，分解能と同程度

しか変化しない事が明らかとなった．そこで各測定結果の平均

値を T2，T3 として上述の関係に代入する事により，Tt-send，

Tt-receive は以下の値で近似できる事が分かった． 
Tt-send ≈ 0.038 – 0.0075 = 0.031 [μs] ........................................ (5) 
Tt-receive ≈ 0.353 – 0.0075 = 0.346 [μs] ..................................... (6) 

一方，図 6 の装置において 0, 1, …, 8 バイトのデータを通信

する時，0.01μs の測定分解能で CAN コントローラの T1，T4 
を各々 5 回ずつ測定した結果，分解能と同程度しか変化しない

事が明らかとなった．そこで各測定結果の平均値を計算する事

により，表 1 が得られた．表 1 より，T1 はデータ長に依存せず，

ほぼ一定である事が分かる．ゆえに，表 1のT1 の平均値をT1 と
して (1) 式に適用する事により，Tc-send は (7) 式で近似できる． 

Tc-send ≈ 47.7 + 0.05 = 47.75 [μs] ............................................. (7) 
一方，表 1 より，CAN データフレームの全ビット長 Nframe を

横軸，T4 を縦軸としてプロットすれば，T4 は Nframe の一次関

数となる．ゆえに，このプロットから回帰直線を計算する事に

より，T4 は (8) 式のような一次関数として近似できる． 
T4 ≈ 3.997×Nframe + 0.737 [μs] ............................................... (8) 

表 1 の T4 と (8) 式の T4 の誤差を計算すると，その最大値

は約 0.1 μs となる．この値は CAN の最大通信速度（1 Mbps）
における 1 ビットあたりの伝送時間のたかだか 0.1 倍なので，

充分小さいものとして無視できる．(8) 式を (4) 式に適用する

事により，Tc-receive は (9) 式で近似できる． 
Tc-receive ≈ 3.997×Nframe + 0.687 [μs] ....................................... (9) 

5.3 通信実験と DCS シミュレーションの相関性の評価 
5.2 節で構築した CAN 制御ノード内部での送信・受信処理

時間の定量予測モデル式 (5)，(6)，(7)，(9) を DCS シミュレー

タの通信プロトコルモデル内に組み込み，より複雑な制御ノー

ド構造と通信シナリオを持つケースにおいて，実機とシミュレ

ータでの通信遅れ時間の結果を比較検証した． 

 
Node 1 Node 2 Node 3 Node 4

ID = 1, Data Length = 8

Intermission
(3 bits)

Reception Period
and Response

Period

t1

t2

t3

t4

ID = 2, Data Length = 8

ID = 3, Data Length = 8

ID = 4, Data Length = 8
Intermission

(3 bits)

 
Fig.8  Communication scenario among four CAN control nodes 

 
Table 2  Comparison of experiment and simulation results 

Rcv.
Time

Experimental Results [μs]

1594 1594 1954 1954 1953

Maximum
Error [μs]

Simulation
Results[μs]

t1
t2
t3
t4

47

585

1087

1593

1

1

3

1

48 48 48 48 47

587 587 586 586 586

1090 1090 1090 1090 1090

Result 1 Result 2 Result 3 Result 4 Result 5

 
 
まず，先程と同様の 4 台の CAN 制御ノードを CAN バスで

接続したモデルを定義し，ノード 1 がノード 2，3，4 へメッセ

ージを送信し，これら 3 台のノードがほぼ同時に応答する図 8
に示す通信シナリオに基づいて，通信速度を 250kbps に設定し，

受信時刻 t1～t4 を測定する通信実験を行う．図 8 において，制

御ノード 2，3，4 はほぼ同時に応答を試みるため，バス調停が 
2 回発生し，その結果 ID の小さいものから順に送信される．

図 8 に基づいて実機による通信実験を 5 回実施した結果と， 
DCS シミュレーションの実行結果を比較したものを表 2 に示

す．Pentium 4（2.66GHz）搭載の PC によるシミュレーション

実行時間は約 3 秒であった．表 2 により，両者の最大誤差は 3μs 
であり，CAN ネットワークにおける 1 ビットあたりの伝送時

間である 4μs 未満である事が分かる．ゆえに，本研究で開発し

た DCS シミュレータは，CAN バス制御の DCS における通信

時間遅れなどの見積もり・予測評価に充分な時間的精度を持つ

と言える． 

6. 結   言 

本研究では，分散制御システムの並列離散事象シミュレーシ

ョン機構の実現と，通信プロトコルモデルの体系的実装を目的

とした研究を行い，以下の結論を得た． 
(1) DCS モデルにおける制御ノード・センサ・アクチュエー

タ・制御対象モデルが送信・受信時刻を持つイベントを

通信する事によって論理上並列に動作し，かつ大域的に

同期するシミュレーション機構を実現できるデザイン

パターンとして，Time-Warp パターンを新たに提案した． 
(2) DCS におけるネットワークの通信プロトコルの静的構

造・動的挙動を，ネットワークの形式から独立して汎用

的にモデル化可能なデザインパターンとして，Protocol 
パターンを新たに提案した． 

(3) (2) のパターンから，通信プロトコルモデルの実行可能

Java コードへ変換するための，システマチックな実装手

続きを提案した． 
(4) 提案するパターンと実装手続きを，提案した DCS シミ

ュレータへ組み込んで，車載 LAN 用の CAN バス制御

DCS の挙動を予測する機能を開発し，その実行結果と実

機上での実行結果を比較した．その結果，DCS の制御性



能に重要となるネットワーク通信時間遅れの見積もり

が最大誤差 3μs と実用上問題のない範囲である事を示

し，提案するパターンと実装方法に基づく DCS 向けの

並列離散事象シミュレーション開発方法論の妥当性を

確認できた． 
今後の課題として，LonWorks ネットワークに関する通信特性

の相関性検証が挙げられる．これに関しては続報で報告する． 
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