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ABSTRACT:

With the spread of the Mobile Laser Scanning (MLS) system, the demands for the management of road and facilities using MLS
point clouds have increased. Especially, pole-like objects such as streetlights, utility poles, street signs and etc. are in high demand
as facilities to be managed. We propose a method for recognizing pole-like objects from MLS point clouds. Our method is based on
Laplacian smoothing using the k-nearest neighbors graph, Principal Component Analysis for recognizing points on pole-like objects,
and thresholding for the degree of pole-like objects. Our method can robustly recognize pole-like objects with various radii and tilt
angles from MLS point clouds. For correctly segmented objects, accuracy of pole-like object recognition is on average 97.4%.

1. INTRODUCTION

With the development of inexpensive and high accuracy laser
scanner devices, the Mobile Laser Scanning (MLS) system
which installed these devices on a car has been widely used.
The MLS point clouds can be useful not only for building and
city modeling, but also for managing various facilities in urban
environments. In particular, pole-like objects such as
streetlights, utility poles, street signs, and etc. are in high
demand as facilities to be managed, and it is required to
recognize them from urban MLS point clouds. However,
manually recognizing these pole-like objects from large point
clouds data requires a great deal of time and cost. Therefore,
for efficient management of facilities, it is necessary to
automatically recognize pole-like objects from MLS point
clouds.

Much research on pole-like objects recognition from MLS
point clouds has been conducted. Existing methods are based
on machine learning (Golovinskiy 2009b, Lai 2009), or the
arrangement and position of measurement points (Manandhar
2001, Lehtomaki 2010). These methods have some problems,
such as they require a lot of training data, or that they cannot
recognize pole-like objects with different radii, and tilt angles.

In this paper, we propose an algorithm to automatically
recognize pole-like objects from MLS point clouds. Our
method is based on Laplacian smoothing using the k-nearest
neighbors graph, Principal Component Analysis (PCA) for
recognizing points on the pole-like objects, and thresholding
for the degree of pole-like objects. By using smoothing and
PCA, robust recognition of the pole-like objects with various
radii and tilt angles is realized. Details of the proposed method
are described in chapter 3.

2. RELATED WORKS

Existing research on automatically recognizing or classifying
objects, including pole-like objects, are introduced in this
chapter.

Based on machine learning, Golovinskiy et al. (Golovinskiy
2009b) propose a method to classify various objects such as
cars, streetlights, trees, fire hydrant, and etc. from the
combination of MLS and ALS point clouds. A major feature of
their method is high precision segmentation by the graph cut
algorithm. To classify objects, they input feature quantities of
objects into the Support Vector Machine (SVM). As learning
data, they used a part of the input data which are classified
manually. In order to increase the recognition rate, a sufficient
amount of learning data must be required. They also indicated
that the better shape descriptors and classifiers are required for
better results. As a similar method using machine learning, Lai
et al. (Lai 2009) attempted to classify objects in MLS point
clouds by using a lot of 3D data that exists on World Wide Web
as learning data. In the learning method, sufficient training data
based on input point clouds is necessary for suitable learning.

Based on the arrangement and position of measurement points,
Manandhar et al. (Manandhar 2001) detected vertical poles
from MLS point clouds. In their research, the MLS point
clouds consisted of vertical scan lines and vertical poles by
extracting vertical line segments from individual scan lines.
Their detection method was limited to the extraction of the
vertical poles. Due to this limit, the method cannot detect tilted
poles and is not applicable to arbitrary point clouds. Lehtomaki
et al. (Lehtomaki 2010) extracted sweeps that were expected to
be measured pole-like objects from MLS point clouds. Then
they found another sweep either below the current sweep or
above, and made them a cluster. However the method cannot
recognize pole-like objects with a specific radii and limited
point densities.



In this paper, we propose a robust recognition method of the
pole-like objects with arbitrary tilt angles and radii from MLS
point clouds without learning data, by using smoothing and
PCA.

3. POLE-LIKE OBJECTS RECOGNITION METHOD
3.1 Overview of the Method

The proposed algorithm is shown in Fig.1. In the method, we
assume that ground points are already removed from given
point clouds. The algorithm of our method consists of four
phases. First, the input point clouds are segmented, as the result
the points estimated on each object are grouped. Second,
smoothing is applied to each segment. Third, each point is
classified into the points on the pole-like objects, on the planar
objects, and on other objects. Finally, the degree of the
pole-like objects of each segment is evaluated, and the
segments of the pole-like object are extracted by thresholding.
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Figure 1. Proposed algorithm of pole-like objects recognition

3.2 Segmentation

Many segmentation techniques of point clouds have already
existed (Golovinskiy 2009a, Moosmann 2009, Wang 2008). In
our implementation, we adopt the simple segmentation method
by connecting the nearest neighbor points. As a result, the
segment is composed of the point set of the connected k-nearest
neighbors graph. The graph is generated to sequentially
generate an edge among the k-nearest neighbors between the
point i and points included in a sphere with a radius r centered
at point i. Even if the neighbors included in the sphere are less
than k, we do not expand the radius r.

3.3 Endpoint Preserving Laplacian Smoothing

The robust extraction of points on pole-like objects by PCA
described in next section is difficult because of the
measurement noises, the bias of the point distributions, and the
differences of the pole-like object radius. Therefore, to improve
the recognition rate of the points on the pole-like objects by
PCA, endpoint preserving Laplacian smoothing is applied to
the k-nearest neighbors graph in our method.

Generally, smoothing is applied for the purpose of removing
the noise of the measurement data. On the other hand, recently,

smoothing is used for other purposes. For example, some
methods of skeleton extraction from point clouds have been
proposed (Au 2008). The purpose of their research is to extract
the skeletons of wire-objects, and the recognition of the objects
is not focused on.

In our method, smoothing is applied to the MLS point clouds in
order to improve the recognition rate of the points on the
pole-like objects by the PCA and to distinguish points on the
pole-like objects from the ones on the planar objects, and the
others. We focus on the exaggeration and the degeneration of
the object shape features based on Laplacian smoothing which
is an operation that moves each point to the centres of the
neighbours. Laplacian smoothing makes the pole-like objects
into a thin pole shapes through shape degeneration. As the
result, the point distributions of the pole-like objects come to be
degenerated into a one dimensional distribution (Fig.2). In
addition, measurement noises are removed. Therefore, applying
the Laplacian smoothing to the scan data raises the recognition
rate of the pole-like object points by the PCA. Laplacian
smoothing is done by applying equation (1).

Pole-like yd
Object Ve

Planar
Object

Other

Object
Original Mesh After 10 times After 100 times
smoothing smoothing
Figure 2. Examples of degenerated objects in mesh model by
smoothing
p: =p; +AAp; (1)
where p; = position of point i after smoothing
p; = position of point i
2 = smoothing strength (0<1<1)
Ap; = Laplacian, and it is given by the equation (2)
Ap; = zjei*wu’ (pj _pi) 2
where w;; = positive weight (¥ w;;=1)

i* = aset of the neighbors of point i

The point clouds of pole-like objects with various radii can be
degenerated into a one dimensional distribution by iteratively
applying equation (1), and then pole-like objects with various
radii can be recognized.

However, Laplacian smoothing has the problem that the
branching structures of the pole-like objects are lost. This
causes the decrease of the recognition rate in the following
object recognition. To solve this problem, we propose the
endpoints preserving Laplacian smoothing, which controls



displacements during smoothing according to the distribution
of the neighbors of a point. At the endpoint, the neighbors are
distributed in one direction. On the other hand, the neighbors
are distributed in all directions at the inner point. From this
observation, the displacements during smoothing are controlled
S0 as to preserve the endpoints according to the distribution of
the neighbors. We evaluate whether point i is the endpoint or
not using equation (3).

o(i) = M|1X”(j2angle(j,i,k) ®)

Kk)ev;

i* = a set of neighbors of point i
Vi ={(j,K) | j ke, j=k}
angle(j,i,k) = angle of j,i,k

where

If the point i is the endpoint, angle(j,i,k) is small (Fig.3 left),
then the e(i) becomes small. On the other hand, if the point i is
far from the endpoint, some angle(j,i,k) are large (Fig.3 right),
then e(i) becomes large.

End Point Inner Point

Figure 3. Neighbors' distribution at the endpoint and the inner
point

Displacements in smoothing can be controlled by using the
smoothing strength A. Additionally in order to reduce influences
of the distant points during smoothing, we use weight w;; which
is in inverse proportion to the distance between points.
Endpoints preserving Laplacian smoothing is done by the
equations (4), (5), and (6).
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Fig.4 shows the comparative result of the Laplacian smoothing
and endpoint preserving Laplacian smoothing for the same
utility pole. The number of iterations of the smoothing is 40.
Fig.4(a) shows the input point clouds of the utility pole.
Fig.4(b) and Fig.4(c) show the results of the Laplacian
smoothing and endpoint preserving Laplacian smoothing
respectively. After the endpoint preserving Laplacian
smoothing, the branching structures still remain. During
iterating smoothing, the distribution of the points on the
pole-like objects with various radii becomes one dimension.
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Figure 4. Comparative result of smoothing
(a) input point clouds of the utility pole
(b) afret Laplacian smoothing
(c) after endpoint preserving Laplacian smoothing
(iteration times n = 40)

3.4 Point Classification

Each point is classified into three types which are the points on
the pole-like object, the points on the planar object, and the
others. The local point distributions are evaluated by
calculating  eigenvalues and  eigenvectors of  the
variance-covariance matrix related to the point i and its
neighbors. The variance-covariance matrix M; of the point i is
shown in equation (7).

M; = ]; Z(F),‘_I:Ti)(pj'_p_i)r (7

jei

where p; = position of point i
i* = aset of the neighbor points of point i

P; = barycenter of i’

We denote eigenvalues of the M; by A%, A% and 25 (AL >
A, =2%) and the corresponding unit eigenvectors by e, e}
and e respectively. The local distribution of neighbors of
point i is figured out by the magnitude relation of the
eigenvalues.

When point i is on the pole-like object, the maximum
eigenvalue 2. is very large compared with other eigenvalues
AL, AL, and the eigenvector el represents the axial direction of
the pole-like objects. On the other hand, when point i is on the
planar object, A: and A, become relatively large compared
with A5. When point i is on the other object, there are not so
many differences between the three eigenvalues.

In order to investigate the magnitude relation of eigenvalues,
we compute the three distribution features of each point i using
equation (8).

Si =4 —al
S, =4, — A ®
Sy =p4

where a, B = adjustment coefficient



When point i is on the pole-like object or planar object or other
object, the distribution futures S%, S, and S becomes the
maximum respectively. Fig.5 shows the result of the point
classification. Fig.5(a)-(c) shows the utility pole, street sign,
and tree respectively. The top row represents the input point
clouds. The bottom row represents the point classification
result after smoothing.

Vandapel, et al. (Vandapel 2004) classify points by using PCA
similarly. They mentioned that it is difficult to hand-tune
thresholding classification because those eigenvalues may vary
considerably depending on the type of terrain, the type of
sensor, and the configuration of the sensor and the vehicle. For
this reason, they use machine learning to classify points.
However, through experiments using some MMS data, we
observed that the points are well classified after smoothing by
comparing Sj, S and S3 in equation (8), which adopts
weights a « and g in the original definition of the saliencies
(Vandapel 2004). Therefore, we use the direct comparisons of
the 57, S and S5 in equation (8) to classify the points (a
and S are set to 10, 100 respectively according our
experiments).

(a) utility pole (b) street sign

(c) tree

Figure 5. Result of the point classification
(green: points on the pole-like object, orange: points on the
planar object, black: points on others)

3.5 Pole-like Object Recognition

Finally by evaluating the geometric properties and classified
points of the segments, each segment is classified into pole-like
object and others. As the minimum requirement for the
pole-like object, we assume that the height of the segment is
more than 2m which is higher than average human height, and
that the number of points of the segment is over 50. Hence, the
segments which do not satisfy these conditions are recognized
as other objects. In addition, the segment in which over 70% of
points are the ones on the other objects is recognized as other
objects, because the pole-like objects we intended consist of
poles and plane surfaces. For each remaining segment, the
degree of the pole-like objects is evaluated by equation (9).

f :[w ICnI+W |D"|jx 100 9)

where wy, w, =Wweights

S,, = aset of points of segment n

C,, = a set of points on the pole-like objects, and
included in S,

D,, = a set of points that have almost vertical e,

and included in C,,

An example of the sets of points S, C,, and D, for a street sign
is shown in Fig.6. The first term of equation (9) represents the
ratio of the points on the pole-like objects in the segment. The
second term of equation (9) represents the ratio of the points
whose neighbors are distributed vertically in the points on the
pole-like objects. The degree of the pole-like object for each
segment is evaluated by the weighted sum of the two terms.
Fig.7 shows the histogram of the value f, about various objects
in MLS point clouds. The value f, becomes lager for the almost
segments of pole-like objects (In the experiment, it was
observed that the segments of the pole-like object had f, over
about 45). Finally, the segments which have f, larger than the
threshold are recognized as pole-like objects.
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Figure 6. Example of the point clouds of a street sign
(orange: points on the planar object, green: points on the
pole-like object, blue: points whose neighbors are distributed
vertically)
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Figure 7. Histogram of f,,, and objects in MLS point clouds



4. RESULT
4.1 Data and Parameter Settings

Three kinds of urban point clouds acquired by MLS system
shown in Table 1 were used in our experiments (Ishikawa
2009). As described in section3.1, the ground points were
removed manually from the given data.

In our methods, each parameter is set as follows.

Number of neighbors: k = 15

Search radius: r =0.5m

Number of iterations in smoothing: n = 40

Threshold of degree of pole-like object: r = 45

Weights in equation (9): w;=1.0, w,=2.0
These parameters were determined based on the experiments
for some data set.

Data Measurement Place Number of Point
| Kyoto, Japan 939,491
1l Kyoto, Japan 743,357
11 Tokyo, Japan 979,881

Table 1. Data used in the article (without the ground points)

4.2 Effectiveness of the Smoothing

Fig.8 shows the results of point classification. Fig.8(a)-(c)
represents a streetlight, street sign, and utility pole respectively.
The top row represents the classification result without
smoothing. The bottom row represents the classification result
with smoothing. The results show that smoothing of the
k-nearest neighbors graph improves the classification accuracy
of the points by PCA and robustness for the differences of the
radius of the object.
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(a) street light

Figure 8. Effectiveness of the smoothing
(green: points on the pole-like objects, black: points on
the planar objects and others)

(b) street sign (c) utility pole

4.3 Pole-like Object Recognition Result

Fig.9 shows the pole-like objects recognized by our method. In
Fig.9(a), there are a lot of various objects such as trees,
buildings, cars, and pole-like objects. In Fig.9(b), the pole-like
objects such as streetlights and utility poles are recognized.
However, some other objects such as trees are included. The
recognition accuracy of the pole-like objects of the three data is
shown in Table 2.

(b) output in our method

Figure 9. Result of the pole-like object recognition

Data I Il 11
[A] The number of total segments of
more than 2m in height, and of |S,,| 246 121 512
>50

[B] The number of correct pole-like

objects 102 51 82

[C] The number of pole-like objects

correctly recognized in [B] 80 31 43

784 60.8 524

[D] Recognition accuracy (=[C]/[B]) % % %

[E] The number of correctly

segmented objects 68 26 32

[F] The number of pole-like objects
correctly recognized in [E] 68 24 32

[G] Recognition accuracy within 100 92.3 100
correctly segmented(=[FJ/[E]) % % %

[H] The number of false recognition 11 7 83

Table 2. Accuracy of the proposed method



The number of correct pole-like objects [B] was manually
verified by using the photograph. [H] is the number of objects
which were recognized as pole-like objects though they are not
the pole-like objects.

The average accuracy of the pole-like object recognition is
63.9% for all segments. On the other hand, the average
accuracy of pole-like object recognition is 97.4% for correctly
created segments. The accuracy varies depending on the
complexity of measured area. The Data | is the point clouds of
simple area, but the Data Il is the point clouds of complex area
which includes overcrowded various objects. Some examples
of the objects which were not correctly recognized in the Data
Il are shown in Fig.10. In both cases, the segment includes
pole-like objects and their neighboring objects, such as a hedge
and tree. Our recognition method is designed for correctly
segmented point clouds, therefore recognition failed for the
incorrect segments. The [G] in Table.2 shows our method
works well for the correctly created segments. In the future, we
will apply an appropriate segmentation method such as that
proposed by Golovinskiy et al. (Golovinskiy 2009a) to the
inputs and evaluate the recognition rate of the object.

o 789

Figure 10. Undetectable pole-like objects by our method

Our method is implemented using standard PC (OS: Windows7
64bit, CPU: Intel Core i7 3.0 GHz, RAM: 6GB). Processing
times of the object recognition are shown in Table 3.

Processing [ | I 1
Creation of kd tree 12 5 13
Segmentation 70 43 88
Smoothing 40 34 40

PCA and Point Classification 40 31 29

Pole-like object recognition 0.01 0.01 0.01

Total running time 162 113 170
Table 3. Running time of our method (sec)

5. CONCLUSION

In this article, we developed an algorithm that automatically
recognizes pole-like objects with tilt angles and various radii
from MLS point clouds in urban environments. Our method is
based on the smoothing and principal component analysis for
point clouds, and the evaluation of the degree of pole-like
objects for the segments. The accuracy of pole-like objects was
on average 97.4% for correctly segmented objects.

Future works are to improve the recognition rate by adopting or
developing an appropriate segmentation method, and to classify
pole-like objects into more detailed object classes, such as
utility poles, streetlights, street signs and so on for supporting
facility management from MLS point clouds.

ACKNOWLEDGMENTS

We would like to thank Ishikawa Kiichiro of Waseda
University for providing the MLS point clouds.

REFERENCES

Au, O., Tai, C., Chu, H., Cohen-Or, D. and Lee, T., 2008.
Skeleton Extraction by Mesh Contraction. Proceeding of
ACM SIGGRAPH, Vol.27, issue 3.

Golovinskiy, A. and Funkhouser, T., 2009a. Min-Cut Based
Segmentation of Point Clouds. |EEE Workshop on Search in
3D and Vision (ICCV).

Golovinskiy, A., Kim, V. and Funkhouser, T., 2009b.
Shape-based Recognition of 3D Point Coluds in Urban
Environments. International Conference on Computer Vision,
pp2154-2146.

Ishikawa, K., Amano, Y., Hashizume, T., Takiguchi, J.,
Shimizu, S., 2009. City Space 3D Modeling Using a Mobile
Mapping System (in Japanese). The Society of Instrument
and Control Engineers Trans. on Industrial Application, Vol.8,
No.17, pp.133-139.

Lai, K. and Fox, D., 2009. 3D Laser Scan Classification
Using Web Data and Domain Adaptation. Robotics: Science
and Systems.

Lehtomaki, M., Jaakkola, A., Hyyppa, J., Kukko, A. and
Kaartinen, H., 2010. Detection of Vertical Pole-Like Objects
in a Road Environment Using Vehicle-Based Laser Scanning
Data. Remote Sensing, VVol.2, pp.641-664.

Manandhar, D. and Shibasaki, R., 2001. Feature Extraction
from Range Data. Proceeding of the 22™ Asian Conference
on Remote Sensing, Vol.2, pp.1113-1118.

Moosmann, F., Pink, O. and Stiller, C., 2009. Segmentation
of 3D Lidar Data in Non-flat Urban Environments using a
Local Convexity Criterion. Proc. IEEE Intelligent Vehicles
Symposium, pp.215-220.

Vandapel, N., F.Huber, D., Kapuria, A., Hebert, M., 2004.
Natural Terrain Classification Using 3-D Ladar Data.
Proceeding of International Conference on Robotics and
Automation.

Wang, L. and Chu, H., 2008. Graph Theoretic Segmentation
of Airborne LiDAR Data. Proc. SPIE Defense and Security
Symposium, pp.69790N-1-10.



